Згин функціонально-градієнтної пластини за нестаціонарного нагрівання і початкового напруження

U. V. Zhydyk

Анотація


Досліджено термопружну поведінку прямокутної ізотропної функціонально-градієнтної пластини, яка, перебуваючи початково в плоскому напруженому стані, нестаціонарно нагрівається середовищем через конвективний теплообмін. Для цього використано п’ятимодальну математичну модель зсувної теорії термопружності та двовимірні рівняння теплопровідності неоднорідних ізотропних пластин. Методами інтегральних перетворень Фур’є і Лапласа знайдено розв’язок нестаціонарної задачі теплопровідності та квазістатичної задачі термопружності для скінченної шарнірно опертої на краях пластини. Числові результати наведено для неоднорідного композита кераміка–метал.

 

Зразок для цитування: У. В. Жидик, “Згин функціонально-градієнтної пластини за нестаціонарного нагрівання і початкового напруження,” Прикл. проблеми механіки і математики, Вип. 21, 77–84 (2023), https://doi.org/10.15407/apmm2023.21.77-84

Ключові слова


термопружність, температурне навантаження, теплообмін, неоднорідні пластини

Посилання


U. V. Zhydyk, V. M. Flyachok, “Thermoelastic analysis of heterogeneous anisotropic plates,” Nauk. Notatky (Lutsk), No. 33, 281–287 (2011) (in Ukrainian).

U. V. Zhydyk, V. M. Flyachok, “Thermoelastic bending of layered anisotropic plates of symmetrical structure,” Kvalil. Knyh., No. 2(32), 77–81 (2017) (in Ukrainian).

Kolyano Yu. M. Methods of Heat Conduction and Thermoelasticity of Inhomogeneous Body [in Russian], Nauk. Dumka, Kyiv (1992).

R. B. Hetnarski (ed.). Encyclopedia of Thermal Stresses (in 11 volumes), Vol. 11, Springer, Dordrecht (2014), https://doi.org/10.1007/978-94-007-2739-7

M. S. A. Houari, S. Benyoucef, I. Mechab, A. Tounsi, E. A. A. Bedia, “Two-variable refined plate theory for thermoelastic bending analysis of functionally graded sandwich plates,” J. Therm. Stresses, 34, No. 4, 315–334 (2011), https://doi.org/10.1080/01495739.2010.550806

R. Javaheri, M. R. Eslami, “Thermal buckling of functionally graded plates,” AIAA Journal, 40, No. 1, 162–169 (2002), https://doi.org/10.2514/2.1626

V. R. Manthena, G. D. Kedar, “On thermoelastic problem of a thermosensitive functionally graded rectangular plate with instantaneous point heat source,” J. Therm. Stresses, 42, No. 7, 849–862 (2019), https://doi.org/10.1080/01495739.2019.1587327

V. R. Manthena, N. K. Lamba, G. D. Kedar, “Transient thermoelastic problem of a nonhomogeneous rectangular plate,” J. Therm. Stresses, 40, No. 5, 627–640 (2017), https://doi.org/10.1080/01495739.2016.1237861

I. Mirsky, “Vibrations of orthotropic thick cylindrical shells,” J. Acoust. Soc. Am., 36, No. 1, 41–51 (1964), https://doi.org/10.1121/1.1918910

N. S. Naik, A. S. Sayyad, “An accurate computational model for thermal analysis of laminated composite and sandwich plates,” J. Therm. Stresses, 42, No. 5, 559–579 (2019), https://doi.org/10.1080/01495739.2018.1522986

L. Qiuhua, P. Hou, S. M. Shang, “Three-dimensional exact analytical solutions of transversely isotropic plate under heat sources,” J. Therm. Stresses, 44, No. 11, 1324–1348 (2021), https://doi.org/10.1080/01495739.2021.1985409

K. Swaminathan, D. M. Sangeetha, “Thermal analysis of FGM plates – A critical review of various modeling techniques and solution methods,” Compos. Struct., 160, No. 1, 43–60 (2017), https://doi.org/10.1016/j.compstruct.2016.10.047

H. T. Thai, S. E. Kim, “A review of theories for the modeling and analysis of functionally graded plates and shells,” Compos. Struct., 128, 70–86 (2015), https://doi.org/10.1016/j.compstruct.2015.03.010

D. Varelis, D. A. Saravanos, “A coupled nonlinear plate finite element for thermal buckling and postbuckling of piezoelectric composite plates including thermos-electro-mechanical effects,” J. Therm. Stresses, 45, No. 1, 30–50 (2022), https://doi.org/10.1080/01495739.2021.2005498

S. S. Vel, R. C. Batra, “Three-dimensional analysis of transient thermal stresses in functionally graded plates,” Int. J. Solid Struct., 40, No. 25, 7181–7196 (2003), https://doi.org/10.1016/S0020-7683(03)00361-5

A. M. Zenkour, “Generalized shear deformation theory for bending analysis of functionally graded plates,” Appl. Math. Model., 30, No. 1, 67–84 (2006), https://doi.org/10.1016/j.apm.2005.03.009

A. M. Zenkour, N. A. Alghamdi, “Bending analysis of functionally graded sandwich plates under the effect of mechanical and thermal loads,” Mech. Adv. Mat. Struct., 17, No. 6, 419–432 (2010), https://doi.org/10.1080/15376494.2010.483323

S. Zghal, S. Trabelsi, A. Frikha, F. Dammak, “Thermal free vibration analysis of functionally graded plates and panels with an improved finite shell element,” J. Therm. Stresses, 44, No. 3, 315–341 (2021), https://doi.org/10.1080/01495739.2021.1871577


Посилання

  • Поки немає зовнішніх посилань.


Creative Commons License
Ця робота ліцензована Creative Commons Attribution 3.0 License.