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In this paper we investigate the existence of solutions to the Dar-
boux problem for a third order hyperbolic differential and functional
differential inclusion with nonconvex-valued right-hand side. We shall
rely on a fixed point theorem for contraction multivalued maps due
to Covitz and Nadler and on Schaefer’s fixed point theorem combined
with a selection theorem due to Bressan and Colombo for lower semi-
continuous multivalued operators with nonempty closed and decom-
posable values.

1 Introduction

This paper deals with the existence of solutions to the Darboux problem
for third order hyperbolic differential and functional differential inclusions
in Banach spaces. In Section 3 we consider the Darboux problem for the
hyperbolic differential inclusion:

Pu(z,y, 2)

edgos € L@z ), (@,y,2) € D =JoxJpxTe = [0,al<{0,5]x[0, ] (1)
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u(z,y,0) = f(z,y), (x,y) € D1 =1[0,a] x[0,0],
w(0,y,2) = g(y,2), (y,2) € D2 =10,b] x [0,¢], (2)
u(z,0,z) = h(z,2), (z,2) € D3 =10,a] x[0,c],

where F' : D x E — P(E) is a given multivalued map, f : D; — E, ¢ :
Dy - E, h:D3 — E, a>0,b>0,c>0and (E,|-]|) a real separable
Banach space, which satisfy the conditions

f(z,0) = h(z,0) =vl(x), z€]0,q],
f(0,y) = 9(y,0) = v*(y), €0,
9(0,2) = (0, 2) = v3(2), z €1[0,¢],
v1(0) = v%(0) = v*(0) = °

This study was motivated by several papers which deal with the Darboux
problem for third order hyperbolic equations [4, 5, 8, 9, 10, 11, 12, 19, 20,
21, 25, 26]. Other results on the Darboux problem for hyperbolic differential
equations can be found in the book by Kamont [17] and the references there-
in. Very recently the problem (1)-(2) was studied by Teodoru ([24, 27, 28|) in
the case of a convex multivalued right hand side. In this paper, we drop the
convex condition and we shall give existence results for the problem (1)-(2)
with a nonconvex-valued right-hand side. We shall present two results. In
the first one we rely on a fixed point theorem for contraction multivalued
maps, due to Covitz and Nadler [6] and for the second one on Schaefer’s fixed
point theorem [22] combined with a selection theorem due to Bressan and
Colombo [1] for lower semicontinuous multivalued operators with nonempty
closed and decomposable values.

Section 4 is devoted to the existence of solutions to the following Darboux
problem for hyperbolic functional differential inclusions

Pu(z,y, 2)

axayaz € F(xayvzyu(x,y,z))a (IIZ’,y, Z) cD (3)

u<x7 Y, Z) - ¢(x7 Y, 2),

(#,y,2) € [=r1,a] X [=r2, b] x [=r3,¢]\((0,a] x (0,0] x (0,¢])  (4)
where F': D x C([—7r1,0] x [-72,0] x [-73,0], E) — P(E) is a multivalued
map, ¢ € C([_Tlaa] X [_TQ’b} X [—’I"g,C]\((O, CL] X (Oab] X (Ovc])’E)aT‘l >
0, 7o > 0,r3 > 0.

For each u € C([—r1,a] x [-re,b] x [-73,¢|, E) and each (x,y, z) € D the
function w(, -y 1 [~71,0] X [=7r2,0] X [=73,0] — E is defined by

U(z,y,2) (37 t, w) = ’U,(J} +s,y+t,z+ w),
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for each
(s,t,w) € [=71,0] x [=72,0] X [~73,0].

Finally in Section 5 we indicate some possible generalizations of IVP (1)
(2) to nonlocal hyperbolic problems

Pu(z,y, 2)

0200 € F(x,y,z,u(x,y,2), (z,y,2)€D (5)

u(m,y,O) + Z’Vk(w,y)u(ﬂf,y, Ck) = f(xvy)> (l’,y) € Ju X Jp (6)
k=1

U(O,y, Z) + Zvi(ya Z)u(ai7y> Z) = g(yvz)v (y,z) € Jp X Je (7)
=1

)4
u(z,0,z) + Zﬂj(m,z)u(a:,bj,z) =h(z,z), (x,z)€JyxJe, (8
j=1

where F, f, g, h are as in the problem (1)-(2), i : Jo X Jp — E, v; : Jp X
Jo— E, ¥ :Jy x J. — E are given functions and a; (i =1,---,p), b; (j =
1,---,¢)and ¢, (k=1,---,r) are given numbers such that 0 < a; < --- <
ap<a, 0<by<---<by<band0<c; <---<c¢ Zec.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts
from multivalued analysis, which are used throughout this paper.

C (D, E) denotes the Banach space of all continuous functions from D
into £ with the norm

[ulloe = sup{lu(z,y, 2)| : (x,y,2) € D}.

LY(D, E) denotes the Banach space of functions u : D — E which are
Bochner integrable normed by

a b c
lullz = /O /0 /0 (e, y, 2)|dzdyde.

Let (X, d) be a metric space. We use the notations:
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P(X) = { P(X):Y #0}, Pa(X)={Y € P(X) : Y closed},
Py(X) = {Y (X) Y bounded}, and P, (X) = {Y € P(X) : Y
compact}.

Consider Hy : P(X) x P(X) — IR4 U {00}, given by

Hy(A, B) = max {sup d(a,B),supd(A, b)} ,
acA beB

where d(A,b) = inf d(a,b), d(a, B) = inf d(a,b).
acA beB

Then (P (X), Hg) is a metric space and (Py(X), Hq) is a generalized
(complete) metric space ([18]).

A multivalued map F : D x E — P,(FE) is said to be measurable if for
each w € F the function Y : D — IR defined by

Y(z,y,2) =dw, F(z,y,z,u)) = inf{d(w,v) : v € F(x,y,z,u)}

is measurable, where d is the metric introduced from the Banach space
C(D,E) .

Definition 2.1. A multivalued operator N : X — P, (X) is called

a) ~y-Lipschitz if and only if there exists v > 0 such that

Hy(N(x), N(y)) < 7d(z,y), for eachz, y € X,

b) contraction if and only if it is y-Lipschitz with v < 1.

N has a fized point if there is z € X such that z € N(z). The fixed point
set of the multivalued operator N will be denoted by FixN.

The proof of our first result is based on the following fixed point theorem
for contraction multivalued operators given by Covitz and Nadler in 1970 [6]
(see also Deimling, 7] Theorem 11.1).

Lemma 2.2. Let (X,d) be a complete metric space. If N : X — Py(X) is
a contraction, then FixN # ().

Denote by £ the o-algebra of the Lebesque measurable subsets of D and
by B(E) the family of all Borel subsets of E. Recall that F': D x E — P(E)
is called £ ® B measurable if for any closed subset C' of EF we have that
{(z,y,2,u) e Dx E: F(z,y,z,u)NC #0} € LR B.
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A subset K of L'(D, E) is decomposable, if for all u,v € K and A € L
we have ux 4 +vxp_a € K, where x4 stands for the characteristic function
of the set A.

Let E be a Banach space, X a nonempty closed subset of F¥ and G : X —
P(E) a multivalued operator with nonempty closed values. G is lower semi-
continuous (Ls.c.) if the set {x € X : G(x) N B # 0} is open for any open
set B in FE. For more details on multivalued maps we refer to the books
of Deimling |7], Gorniewicz [14], Hu and Papageorgiou [16] and Tolstonogov
[29].

Definition 2.3. Let Y be a separable metric space and let N : Y —
P(LY(D, E)) be a multivalued operator. We say N has property (BC) if

1) N is lower semi-continuous (l.s.c.);

2) N has nonempty closed and decomposable values.

Let F: D x E — P(E) be a multivalued map with nonempty compact
values. Assign to F' the multivalued operator

F:C(D,E)— P(D,E))
by letting
F(u) ={w e LY(D, E): w(z,y, 2) € F(z,y,z,u(z,y,2))

for a.e. (x,y,2)e D}.

The operator F is called the Niemytzki operator associated with F.

Definition 2.4. Let F' : D x E — P(E) be a multivalued function with
nonempty compact values. We say F' is of lower semi-continuous type (l.s.c.
type) if its associated Niemytzki operator F is lower semicontinuous and has
nonempty closed and decomposable values.

Next we state a selection theorem due to Bressan and Colombo.

Theorem 2.5. [1]. Let Y be a separable metric space and let N : Y —
P(LY(D, E)) be a multivalued operator which has property (BC). Then N

has a continuous selection; i.e., there exists a continuous function (single-
valued) g : Y — LY(D, E) such that g(y) € N(y) for everyy € Y.
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3 The Darboux Problem for Hyperbolic Differen-
tial Inclusions

In this section we state and prove our first theorem for the IVP (1)—(2).
First however we give the definition of a solution of the IVP (1)—(2).

Definition 3.1. By a solution of (1)-(2) we mean a function u(-,-,-) €
C(D, E) such that there exists v € LY(D, E) for which we have

u(r,y,2) = Q(z,y, 2 / / / (t,s,w)dwdsdt for each (z,y,z) €

with v(t,s,w) € F(t,s,w,u(t,s,w)) a.e. on D; here Q(z,y,2) = f(z,y) +
9(y, 2) + h(z, 2) — vl (z) = v*(y) — v*(2) + 2"

Theorem 3.2. Assume that:

(H1) F : D x E — P.,(E) has the property that F(-,-,-,u) : D — P, (E)
is measurable for each u € E;

(H2) Hy(F(t,s,w,u), F(t,s,w,u)) < Llu—1al|, for each (t,s,w) € D and
u,u € E, where L is a positive constant, and

Hy(0,F(t,s,w,0)) < M(t,s,w) fora. e (ts,w)€D,

with
M('v ) ) € Ll(D7 IR+)

Then the IVP (1)-(2) has at least one solution on D.

Proof. Let m be a positive constant (to be chosen later) and on the
space C(D, E) take the norm || - || given by

lulle = WS De’m(”y“)!uwyyw)l-
,Y,2)€

We first transform the problem (1)—(2) into a fixed point problem. Consider
the multivalued operator, N : C(D, E) — P(D, E)) defined by:

N(u)={h € C(D,E) : h(z,y,z) = Q(z,y, 2)+

T Yy rz
+/ / / v(t, s,w)dwdsdt, v € Sp,u}
0o Jo JO
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where
Sru = {v € LYD,E) : v(t,s,w) € F(t,s,w,u(t,s,w))

for a.e. (t,s,w) € D}.

Remark 3.3. (i) It is clear that the fized points of N are solutions to (1)-

(2).
(i1) For each uw € C(D, E) the set Sg,, is nonempty, since by (H1) F has a
measurable selection (see [3], Theorem I11.6).

We shall show that N satisfies the assumptions of Lemma 2.2. The proof
will be given in two steps.

Step 1: N(u) € Py(C(D, E)) for each uw € C(D, E).

Indeed, let (hy)n>0 € N(u) such that h, — h in C(D, E). Then h €
C(D, E) and there exists g, € Sp,, such that for each (z,y,2) € D

hn(x,y,2) = Q(z,y, 2 / / / gn(t, s,w)dwdsdt.

Using the fact that F' has compact values and from (H2) we may pass
to a subsequence if necessary to get that g, converges to g in L!(D, E) and
hence g € Sp,,. Then for each (z,y,z2) € D

hn(z,y,2) — iL(x,y, z) =Q(z,y,z / / / (t,s, w)dwdsdt,

so @ € N(u).

Step 2: Hy(N(u1), N(u2)) < 7|lur — uel|lc for each ui,us € C(D,E)
(where v < 1).

Let ui,us € C(D,E) and hy € N(up). Then there exists gi(t,s,w) €
F(t,s,w,ui(t,s,w)) such that

T oy rz
hi(z,y,z) = Q(z,y, z)+/ / / g1(t, s, w)dwdsdt for each (t,s,w) € D.
o Jo Jo

From (H2) it follows that

Hy(F(t,s,w,ui(t,s,w)), F(t,s,w,us(t,s,w))) < Llui(t, s, w) — ua(t,s, w)|.
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Hence there is p € F(t, s, w, ua(t, s, w)) such that
lg1(t, s,w) — p| < L|ui(t, s, w) — us(t, s,w)|, (t,s,w)e€D.
Consider U : D — P(FE), given by
U(t,s,w) ={p € E:|q1(t,s,w) —p| < Llui(t,s,w) — ua(t,s,w)|}.

Since the multivalued operator V (¢, s, w) = U(t,s,w) N F(t, s, w,ua(t, s, w))
is measurable (see Proposition III.4 in [3]) there exists ga(t, s, w) a measur-
able selection for V. Thus ga(t, s,w) € F(t,s,w,us(t, s, w)) and

lg1(t, s, w) — ga(t, s,w)| < Llui(t, s, w) — ua(t,s,w)| for each (¢,s,w) € D.

Let us define for each (t,s,w) € D

ho(z,y,2) = Q(z,y, 2 / / / g2(t, s,w)dwdsdt.

Then we have

T oy oz
(2,9, 2) — halm,9, )| < / / / 01 (t, 5,w) — go(t, s, w)| dwdsd
0 0 0

T oy rz

< L/ / / lui(t, s,w) — ua(t, s, w)|dwdsdt

= / / / lu1 — usg | ce™ 5+ dwdsdt
Lem($+y+z

< THUl - UQHC’

Thus I
[h1 = hallc < —5llur — uzllc-
m

Essentially the same reasoning (obtained by interchanging the roles of w;
and ug) yields

H(N(ur), N () < s — e

Let m be a positive constant such that L < m3. Then N is a contraction and
thus, by Lemma 2.2 N has a fixed point u, which is a solution to (1)-(2).

Now Schaefer’s theorem combined with a selection theorem of Bressan
and Colombo for lower semicontinuous maps with nonempty closed and de-
composable values also gives us an existence result for the problem (1)-(2).
Before this, let us introduce the following hypotheses which are assumed
hereafter:
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(Cl) F:Dx E — P(E) is a nonempty compact valued multivalued map
such that:
a) (z,y,z,u) — F(z,y,2z,u) is L ® B measurable;
b) u— F(x,y,z,u) is lower semi-continuous for a.e. (z,y, z) € D;

(C2) For each r > 0, there exists a function h, € LY(D,IR™) such that

[F(2,y,2,u)] = sup{|v[:v e F(z,y,z,u)} <he(z,y,2)
for a.e. (z,y,2) € D and u € E with |u| <.

In the proof of our next main result we will need the following well known

theorem.

Lemma 3.4. [13]. Let F : D x E — P(E) be a multivalued map. Assume
(C1) and (C2) hold. Then F is of l.s.c. type.

Theorem 3.5. Suppose, in addition to hypotheses (C1), (C2), the following
also hold:

(H3) There exist functions p,q € L*(D,IR™) such that
|F(z,y,2,u)| = sup{|v| : v € F(z,y,2z,u)} < p(z,y,2) + q(z,y, 2) |ul,
for almost all (x,y,z) € D and all u € E.

(H}) For each (x,y,z) € D, the multivalued map F(x,y, z,-) maps bounded
sets of E into relatively compact sets of E.

Then the initial value problem (1)-(2) has at least one solution on D.

Proof. Now (Cl) and (C2) (see Lemma 3.4) that F' is of lower semi-
continuous type. Then from Theorem 2.5 there exists a continuous function
R :C(D,E) — LY(D, E) such that R(u) € F(u) for all u € C(D, E).

We consider the problem

Pu(z,y,2)
dxdyoz
u(z,y,0) = f(z,y), u(0,y,2) =g(y,2), u(x,0,2)="n(z,z2). (10)

If u e C(D, E) is a solution of the problem (9)-(10), then w is a solution to
the problem (1)-(2).

= R(u)(:v,y, Z)v (.1‘, Y, Z) €D, (9)
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We transform problem (9)—(10) into a fixed point problem by considering
the operator N : C(D, E) — C(D, E) defined by:

N(u)(y,2) = Q(a,9,2) + /0 ’ /0 ' /0 “R(w)(&, 1, 0)d0dnde.

We shall show that N is a continuous and completely continuous opera-
tor.

Step 1: N is continuous.

Let {u,} be a sequence such that u, — u in C(D, F). Then

IN(un) (@, 2) — N(u) (2,9, 2)| < /0 /0 s /0 " [ R(un) (€., 0)

a prb prc
~Ru)(En0)ldtdnds < [ [ [ RGw)(E.0) = Rew) €. 0) avnas.
Since the function R is continuous, then

IN(uy) — N(u)]|oo — 0 as n — 0.

Step 2: N is bounded on bounded sets of C(D, E).

Indeed, it is enough to show that there exists a positive constant k such
that for each uw € B, = {u € C(D,E) : ||u||ooc <7} one has | N(u)]c < k.
By (H2) we have

T Yy z
(Nu)(z, y, 2)| < |Q(z,y,2)| + /0 /0 /0 ho(t, 5, w)dwdsdt,

SO

a b c
[N (w)loo < [|Qls0 +/ / / he(t, s, w)dwdsdt == k.
0 0 0

Step 3: N maps bounded sets into equicontinuous sets of C(D, E).

Let (x1,y1,21), (x2,92,22) € D, 21 < x2, y1 < Y2, 21 < 2. Thus we
obtain

|(Nu)(z2,y2, 22) — (Nu) (21,91, 21)| < |f(22,92) — f(21,91) |+

= lg(y2, 22) — g(y1, 21)| + |h(22, 22) — h(w1, 21) |+
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T2 Y2 [Z2 Y1
+/ / / |R(u)(t, s, w |dwdsdt+/ / / )(t, s, w)|dwdsdt+
1 z1
Y2 Yo
/ / / ) (t, s, w ]dwdsdt—l—/ / /
Y1 Y1
<|f

(w2,92) — fx1,y1)| + 9(y2, 22) — g(y1, 21 h(xg2, z2) — h(x1, z1)|+

i )+
Y2 1
+/ / / hy(t, s, w dwdsdt+/ / / q(t, s, w)dwdsdt+
1 Z1
Y2 Yo
/ / / q(t, s, w dwdsdt—i—/ / / q(t, s, w)|dwdsdt,
y1 Ja v

where ¢ = ||u||oo. As (z2,y2,22) — (21,¥1,21) the right-hand side of the
above inequality tends to zero. As a consequence of Steps 1 to 3 and (H4) to-
gether with the Arzela-Ascoli theorem we can conclude that IV is completely
continuous.

)(t, s, w)|dwdsdt <

Step 4: Now it remains to show that the set
Q:={ueC(D,E):u=AN(u), forsome 0<A\<1}
1s bounded.

Let u € Q. Then u = AN (u) for some 0 < A < 1 and

T Yy rz
w(,y,2) = AQ(z, s 2) + A / / / R(ult, s, w))dwdsdt, (x,y,7) € D,
0 0 0

where R is as described at the beginning of the proof. This implies by (H3)
that for each (z,y,2) € D we have

(. 2) < |Qy,2)] + / ) / ’ / oty 5,w) + a(t, 5, w)lut, 5, w)|dwdsd

IN

T oy 2
1Qloe + Pl 1 + /0 /0 /0 o(t. 5. w0)u(t, 5, w)|dwdsdt.

Invoking Gronwall’s inequality we get that

u(z, y, w)| < [[1Qllo + llpll 1] expllgllzr == K.

This shows that €2 is bounded. As a consequence of Schaefer’s theorem (|22,
23|) we deduce that N has a fixed point u which is a solution to problem
(9)-(10). Then w is a solution to the problem (1)-(2).
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Remark 3.6. A slight modification of the proof above (i.e. in Step 4 use
the standard Leray—-Schauder alternative [15]) guarantees that (H3) could be
replaced by

(H3)* There exist a function ¢ € L*(D,IR") and a continuous nondecreasing
function 1 : [0,00) — (0,00) such that

|F (2,9, 2,u)| < q(z,y, 2)¥(|u]),

for almost all (x,y,z) € D and all u € E provided there exists a con-
stant M >0 with

M
a b c
1Qlle + (M) /0 /0 /0 o(t. 5, w)dwdsdt

> 1

4 The Darboux Problem for Hyperbolic Functional
Differential Inclusions

Definition 4.1. By a solution of (3)-(4) we mean a function u(-,-,-) €
C([~r1,a] x [~ra,b] X [~73,c], E) such that, there exists v € LY(D, E) for
which we have

T Yy rz
+/ / / v(t, s, w)dwdsdt
o Jo Jo

for each (z,y,2) € D and v(t,s,w) € F(t,5,w,uys.w)) a-e. on D and
u(x,y,z) = ¢(l‘aya Z) on [_rlaa] X [_T27b] X [—T‘g,C]\((O,CL] X (Oab] X (O’C])

Let D = [—7r1,a] X [~79,b] x [=73,¢] and D = [—ry,a] x [~rg,b] x
[—73,c]\((0,a] x (0,b] x (0,c]). The main result of this section is the fol-
lowing:

Theorem 4.2. Assume that:

(B1) F : D x C([—r1,0] x [-r2,0] X [-r3,0], E) — P.,(E) has the property
that F(-,-,-,u) : [=r1,0] X [=72,0] X [—=r3,0] — Py, (E) is measurable
for each u € C([—r1,0] X [—r2,0] X [—r3,0], E);
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(B2) Hy(F(t,s,w,u), F(t,s,w,u)) < L|ju—1)|, for each (t,s,w) € D and
u,w € C([—r1,0]x[~1a,0] x[~73,0], E), where L is a positive constant,
and

Hy(0,F(t,s,w,0)) < N(t,s,w) fora.e. (t s,w)e€D,
with
N('7 "y ) S L1<D7 ]R+)

Then the IVP (3)-(4) has at least one solution on [—ri,a] X [—r2,b] x
[—7r3,c]. In (B2) || - || is the sup norm on [—ry,0] X [—rg,0] x [—73,0].

Proof. Let m be a positive constant and on the space C(D, E) take the
norm || - ||¢ given by

[ulle = ( SU])D ez, y, 2).
x,y,2)ED

We transform the problem (3)—(4) into a fixed point problem. Consider the
multivalued operator N : C(D, E) — P(C(D, E)) defined by:

o(z,y, 2), (v,y,2) € D
o(x,y, )+¢(x 0,2)
N@w) =dheCD,E): hiz,y,z) = To0:y.2)—(0,0,0)
/ / / (t, s, w)dwdsdt,
55 Y, 2 )
where

(NS SF,u = {U € LI(D,E) : U(ta va) € F(t’svwau(t,s,w))

for a.e. (t,s,w) € D}.

Now apply Lemma 2.2. The ideas are essentially the same as those in Section
3 s0 as a result we omit the details.

Also Schaefer’s theorem combined with a selection theorem of Bressan
and Colombo for lower semi-continuous maps guarantees our next result.

Theorem 4.3. Suppose, in addition to hypotheses (C1), (C2), the following
also hold:
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(H3)" There exist functions p,q € L*(D,IR™) such that

|F(z,y, z,u)| := sup{|v] : v € F(2,y,z,u)} < p(z,y,2) + q(z,y, 2)|u],
for almost all (x,y,z) € D and all u € C([—r1,0] x [—re,0] X
[_T370]7E)'

(H4)’ For each (x,y,z) € D, the multivalued map F(z,y, z,-) maps bounded
sets in C([—r1,0] X [—712,0] x [—73,0], E) into relatively compact sets
of E.

Then the initial value problem (3)-(4) has at least one solution on D.

5 Nonlocal Darboux Problem

In this section we indicate some generalizations of the problem (1)-(2).
By using the same method, as in Theorem 3.2 (with obvious modifications),
we can prove existence results for the nonlocal Darboux problem (5)—(8). We
introduce the following additional assumptions:

(Dl) Y € C(J X Jp, )(k = ) € C(Jb X JC,E) (’L =
L ,p), 05 € C(JaxJe, E) (j = 1 -, 0), %(I 0) =7(0,y) =0(k =
Ly T) v,,(y,()):vz( ):0( ) --,p)v"(w 0) 79(072):

0G=1,-,0).

By a solution of the nonlocal problem (5)—(8) we mean a function
u(-,-,-) € C(D, E) such that there exists v € L' (D, E) for which we have

T

U(.’L‘,y, Z) = f(l',y) + g(y,z) + h($7z) - Vk(l'ay)u(m7y7ck)_
k=1

p
- Z Ui(y7 Z)u(aia Y, Z)
=1

7219 z, 2)u(z,bj, 2) — v (2) — v*(y) — v3(2) +0°

/ / / (t,s,w)dwdsdt for each (x,y,z) € D,

and with v(z,y, 2z) € F(z,y,z,u(x,y, z)) a.e. on D.
For results on nonlocal problems the interested reader is referred to [2]
and the references cited therein.
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Theorem 5.1. Assume that hypotheses (H1), (H2) and (D1) hold. Then the

nonlocal problem (5)-(8) has at least one solution on D.

Theorem 5.2. Assume that hypotheses (C1), (C2), (H3), (D1) hold. Then
the nonlocal problem (5)-(8) has at least one solution on D.
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ICHYBAHHA PO3B’4A3KIB 3AJAYI JAPBY OJIA
T'ITEPBOJITYHUX JIVMOEPEHIIAJIbHNX BKJIFOYEHD B
BAHAXOBUX IIPOCTOPAX

A. APAPA, M. BEHYOXPA

Hocmimkeno icayBanust po3s’s3kiB 3amaqdi ipixsie st rimepOosiaanx
nudepeHIiaabHuX i GYHKIIOHAIBHIX JU(EPEHITIATBHUX BKIIOYCHb TPETHOTO
HOPSA/JIKY 3 HE OIYKJIO3HAYHOIO 11PABOI0 YaCTUHOIO.



