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We show that every normal functor acting in the category of
compact Hausdorff spaces COMP determines a functor in the category
UMET of ultrametric spaces and nonexpanding maps. Some properti-
es of the obtained functors in UMET are established. In particular,
we show that these functors preserve the class of complete ultrametric
spaces, this fact was already known for the hyperspace functor and
the probability measure functor. We show also that every natural
transformation of normal functors in COMP determines a natural
transformation of the corresponding functors in UMET.

1 Introduction

Since their invention, the notion of ultrametric appeared in real analysis,
number theory and topology. Later it founded numerous applications, not
only in different areas of mathematics but also in physics, mathematical
economics, decision theory, biology etc.

In connection with some problems of semantics of program languages,
in [2]| (see also [12]) an ultrametric on the set of probability measures with
compact support on an ultrametric spaces is introduced. It is proved, in
particular, that this construction determines a functor on the category of
ultrametric spaces and nonexpanding maps. A similar construction for the
so called possibility measures (idempotent measures, in another terminology)
is considered in [4]. A survey of some results concerning the functors in the
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category of ultrametric spaces is given in [8]. Note also that the construction
can be also defined for the plausibility measures [1].

The aim of this paper is to extend the construction over the case of the
so called normal functors in the category of compact Hausdorff spaces. The
notion of normal functor is introduced by E.V. Shchepin [9]. In this note we
show that every normal functor acting in the category UMET of compact
Hausdorff spaces determines a functor in the category of ultrametric spaces
and nonexpanding maps and every natural transformation of normal functors
determines a natural transformation of the corresponding functors.

We investigate some properties of the obtained functors in the category
UMET. In particular, we show that the obtained functors have continuous
supports and that they preserve the class of complete ultrametric spaces.

2 Preliminaries

2.1 Ultrametric spaces and nonexpanding maps

Recall that a metric d on a set X is said to be an ultrametric if the
following strong triangle inequality holds:

d(z,y) < max{d(z,z),d(z,y)}

for all z,y,z € X.

Recall also that a map f: X — Y of metric spaces (X,d) and (Y, 0)
is called nonezpanding if o(f(x), f(y)) < d(z,y), for all z,y € X. The
ultrametric spaces and their nonexpanding maps form a category denoted
by UMET.

2.2 Normal functors in the category of ultrametric spaces

Denote by COMP the category whose objects are compact Hausdorff
spaces and whose morphisms are continuous maps. The notion of normal
functor in the category COMP is introduced by E.V. Shchepin [9].

In the sequel, ‘functor’ means ‘covariant functor’.

Definition 2.1. We say that a functor F': COMP — COMP is normal if
Fis:

1. F preserves weight (i.e., w(F (X)) = w(X), for every infinite X);

2. F'is continuous;
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F is monomorphic (i.e., F' preserves embeddings);
F is epimorphic (i.e., F' preserves the onto maps);
F' preserves intersections;

F' preserves preimages;

NS o e W

F preserves singletons and the empty set.

The definition above requires some comments. Continuity of a functor F'
means that it commutes with the limits of inverse systems over directed sets.

For a monomorphic functor F' and any closed subset A of a compact
Hausdorff space X, we identify F(A) with the subset F(i)(F(A)) of F(X),
where 7: A — X denotes the inclusion map. That F' preserves the intersecti-
ons means that F(Naerda) = NacrF(Ay), for every family {4, | o € I'}
of closed subsets of a compact Hausdorff space X. Given a monomorphic
functor F' that preserves the intersections, for any a € F(X), we define
the support supp(a) as N{A | A is a closed subset of X and a € F(X)}. By
F,(X) we denote the set of points of finite support in the set F'(X).

The preservation of preimages means that, for any map f: X — Y
in COMP and any closed subset B of Y, we have F(f)"Y(F(B)) =
F(f~1(F(B))).

A functor F' is called almost normal (respectively weakly normal) if it
preserves all the properties from the definition of normal functor but the
preimage-preservation (respectively of being epimorphic).

2.3 Extension of normal functors onto the category of
Tychonov spaces

By 3 we denote the Stone-Cech compactification functor acting from the
category COMP to the category TY CH of T'ychonov spaces and continuous
maps.

The following construction is described by Chigogidze [3]. Given a normal
functor F': COMP — COMP and a Tychonov space X, we let

F3(X) = {a € F(8X) | supp(a) C X C BX}.
If f: X =Y is a morphism in TYCH, then F(3(f))(F3(X)) C Fg(Y) and
we denote by Fpg(f) the restriction F(B(f))|Fp(X): Fg(X) C Fp(Y). The
obtained functor Fj in the category TYCH is a normal functor in the sense
of [3].
For the sake of notational simplicity, we keep the notation F' for the
extended functor over the category TYCH.
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3 Main results

Let (X, d) be au ultrametric space. For any r > 0 denote by D, the family
of decompositions D of X satisfying the conditions: every element of D is
a union of balls of radii > r. We denote by F, the family of quotient maps
{X - X/D|DeD,}.

Define the function d: F(X) x F(X) — R as follows:

A~

d(a,b) =inf{r > 0| F(f)(a) = F(f)(b), for every f € F.}.

We first remark that this function is well-defined. Indeed, let a,b € F(X).
Then the set A = supp(a) U supp(b) is compact and therefore bounded.
Suppose that diam(A) < rg, for some 79 > 0. Then, for any f € F,,, the set
f(A) is a singleton and therefore F(f)(a) = F(f)(b).

Theorem 3.1. The function d is an ultrametric on the set F(X).

Proof. It is obvious that d(a,b) > 0, for all a,b € F(X). Suppose now
that a # b. Since the set of points with finite supports is dense in F(X)
(see [9]), there exists ro > 0 and f € F,, such that F(f)(a) # F(f)(b). We
therefore conclude that d(a,b) > ro > 0.

It is clear that the function d is symmetric.

We are going to show that d satisfies the strong triangle inequality. Let
a,b,c € F(X) and suppose that d(a,b) < r, d(b,¢) < r, for some r > 0. Then
there exist D1, Dy € D, such that, for the quotient maps ¢;: X — X/Dj,
i = 1,2, we have F(q1)(a) = f(q1)(b) and F(q2)(b) = F(q2)(c). Denote by
D the decomposition

Dl/\DQZ{UlmU2|Ui€Di7 i:172}\{®}7

then from the properties of ultrametrics it easily follows that D € D,. The
quotient map ¢: X — X/D has the property that ¢ = fiq1 = faqa, for some
f17 f2~ Then

F(q)(a) = F(fiq1)(a) = F(f1q1)(b) = F(f2q2)(b) = F(f2g2)(c) = F(q)(c),

whence d(a, ¢) < r and the strong triangle inequality holds. O
In the sequel, we endow the spaces of the form F(X), for an ultrametric
space (X, d) with the ultrametric d defined above.

Theorem 3.2. Let (X, d), (Y, 0) be ultrametric spaces and let f: X — Y be a
nonexpanding map. Then the map F(f): F(X) — F(Y) is also nonexpandi-

ng.
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Proof. Let a,b € F(X) and o(F(f)(a), F(f)()) < r, for some r > 0.
Then for every g € F, we have F(g)(F(f)(a)) = F(g)(F(f)(b)). Since the
map f is nonexpanding, we conclude that gf € F,, whence a?(a, b) < r. This
completes the proof. O

We therefore obtain an endofunctor in the category UMET (we keep
the notation F' for such a functor).

Let ¢ = (px): F — G be a natural transformation of normal functors
in COMP. It is known that such a transformation uniquely determines the
natural transformation of the extended functors over TYCH (for which we

keep the same notation).

Theorem 3.3. Any natural transformation ¢ = (px): F' — G of normal
functors in COMP determines a natural transformation of the correspondi-
ng functors in UMET.

Proof. Let (X, d) be an ultrametric space, a,b € F(X) and d(a,b) < r.
Then, for every f: X — Y, f € F,, we have F(f)(a) = F(f)(b). Let o
denote the ultrametric on Y. From the commutativity of the diagram

F(f)
F(X) — F(Y)
ox | I ey
GX) — G(Y)
G(f)

we conclude that

G(flyx(a) = oy F(f)(a) = oy F(f)(b) = G(f)px(b),

whence d(px(a), px(a)) < r. We therefore conclude that the maps ¢x are
nonexpanding. O

Proposition 3.4. The set F,(X) is dense in the space F(X), for any
ultrametric space (X, d) and any normal functor F.

Proof. Let a € F(X) and € > 0. Let D € D.. For any element C € D,
choose a point z¢ € C. It is clear that the set Y = {x¢ | C € D} is closed
in X, being a discrete space in the sense that d(z,y) > ¢, for every x,y € Y,
T #y.

Denote by f: X — Y the retraction such that f(C) = {z¢}, for every
C € D. Then F(f)(a) € F,(X), because supp(F(f)(a)) = f(supp(a))
is a compact subset of Y and therefore finite. One can easily see that

A~

d(a, F'(f)(a)) <e. O
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4 Examples

Below we list some examples of normal functors and describe the
ultrametric.

1) We start with the trivial example of the identity functor. Obviously,
the above construction determines also the identity functor on the category
UMET.

2) Let F' = (—)", where 1 < n < w (the power functor). One can easily
see that, for an ultrametric space (X, d), the metric d looks as follows:

A~

d((x1,...,xn), (Y1, -y yn)) = max{d(z;,y;) | i =1,...,n}

(the ls-metric).

3) Let F' = (—)¥ (the countable power functor). In this case one also
obtains the l,-metric on X*“. Note that this metric does not generate the
product topology on X*, for compact X.

4) Let exp denote the hyperspace functor. Recall that the hyperspace
exp(X) of a Tychonov space X is the set of all nonempty compact subsets
of X. The Vietoris topology on exp(X) is the topology whose base consists
of the sets of the form

(U,...,Up)y={A€exp(X)| AC U A;, ANU; # 0 for every i},

where Uy, ..., U, run over the topology of X, n € N. If (X,d) is a metric
space, then the topology of exp(X) is that generated by the Hausdorff metric
dy:

dp(A,B) =inf{r >0| AC O,(B), BC O,(A)}

(here O¢(C) stands for the r-neighborhood of C). It is known (and easy to
see) that the Hausdorff metric dy is an ultrametric if so is d.

We are going to show that, for any ultrametric space (X,d), the
ultrametric d coincides with dg. Let A, B € exp(X). If dg(A, B) < r, then
every ball B,(z) either intersects both A and B or misses both A and B.
Then, for every f € F,, we have f(A) = f(B), whence CZ(A,B) < r and we
conclude that d < dy. On the other hand, if a?(A, B) < r, then consider the
decomposition D = {B,(x) | z € X} and let f: X — X/D be the quotient
map; then f(A) = f(B), whence A C O,(B), B C O,(A) and we conclude
that dg (A, B) <.

5) The functor P of probability measures. The set P(X) consists of
probability measures with compact support on X. Hartog and Vink [2]
introduced the ultrametric on the set P(X) as follows. For r > 0, let O,
consist of all sets that can be represented as the unions of balls of radii r.
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Since, for every D € D,, the elements of D belong to O,, we conclude that
the ultrametric described above coincides with that introduced by Hartog
and Vink.

6) One can similarly prove that, for the functor I of idempotent measures,
the metric defined above coincides with that defined by Hubal’ and Zarichnyi

14].

4.1 Properties
In the sequel, F' is a normal functor in the category COMP.

Proposition 4.1. Let X be a finite ultrametric space. The ultrametric space
F(X) is discrete in the sense that there is ¢ > 0 such that, for any distinct
a,b e F(X), we have d(a,b) > c.

Proof. Let ¢ = min{d(z,y) | z,y € X, © # y}. Then ¢ > 0. If
a,b € F(X), a # b, and F(f)(a) = F(f)(b), for some f € F., r > 0,
then necessarily r > ¢, whence the result follows. O

Theorem 4.2. The map supp: F(X) — exp(X) is nonexpanding.

Proof. Let a,b € F(X) and dg(supp(a),supp(b)) > r. Then, for any

r’ <randany f € D,s, we have f(supp(a)) # f(supp(b)), whence F(f)(a) #
F(f)(b), and therefore d(a,b) > 1. Since ' < r is arbitrary, we conclude that
d(a,b) > dg(supp(a), supp(b)). Thus the map supp is nonexpanding. O

It follows from Theorem 4.2 that the map supp is continuous and
therefore all the functors in the category UMET generated by mnormal
functors in COMP are functors with continuous supports. Note that this is
not the case for the functors in the category COMP.

Remark also that, for a compact ultrametric space (X, d), the topology
on F(X) induced by the metric d, does not necessarily coincide with the
initial topology of F(X). Indeed, this easily follows from the existence of the
normal functors with discontinuous supports (e.g., the functor P of probabi-
lity measures).

The following example demonstrates that, even for the functors of fi-
nite degree with continuous supports, the topology on F(X) induced by
the metric cz, does not necessarily coincide with the initial topology of
F(X). Indeed, denote by P, the functor of probability measures with
support of cardinality at most 2. The elements of Py(X) are of the form
p=1t6, + (1 —t)dy, where x,y € X and t € [0,1]. We define the subfunctor
F of P, as follows:

F(X) = {tdy + (1 — )8, € Py(X) |t € {0,1} U[1/3,2/3]}.
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It is easy to see that

d(téy + (1 — )0y, $05 + (1 — 5)dy) = d(z,y),
for any distinct s,t € [1/3,2/3].

Proposition 4.3. Let X be a closed subset of an ultrametric space Y. Then
F(X) is a closed subset of F(Y).

Proof. It is easy to see that F(X) = supp !(exp(X)) and the result
follows from Theorem 4.2 and the fact that exp(X) is a closed subset of
exp(Y). O

Proposition 4.4. Let (X,d) be a bounded ultrametric space. Then
diam(X, d) = diam(F(X),d).

Proof. The result follows from the fact that, for the constant map
f: X — {+}, we have F(f)(a) = F(f)(b), for every a,b € F(X), because F'
preserves the singletons. O

Theorem 4.5. Let (X,d) be a complete ultrametric space. Then the space
(F(X),d) is also complete.

Proof. Let (a;){2; be a Cauchy sequence in F(X). Since the space
exp(X) is complete (see [13]), the sequence (supp(a;));2; is convergent. Let
us denote its limit by A.

For any n € N, let us choose a finite disjoint family B,, of balls of radii
1/n that covers A and such that every element of this family intersects A.
Let A, be a subset of A such that every element of B, contains precisely
one of the points of A,,. Denote by r,: UB, — A the retraction that sends
every element of B,, into the point of A, belonging to this element.

Then the sequence (F(ry)(a;)):2, is stationary; this easily follows from
the fact that this sequence is convergent and Proposition 4.1.

let us denote its limit by b,, n € N. Obviously, supp(b,) C A, for every
n € N. There exist maps s, : supp(bn+1) — supp(b,) such that s,r,+1 =,
for every n € N. One can easily see that F(sy)(bn+1) = bn.

Because of the completeness of X, one can naturally identify A =
lim{supp(by), sp} with a subset of X. The sequence (b,);2; is therefore
convergent in the space F(A) (endowed with the initial topology); let us
denote its limit by a. We are going to show that a is the limit of the sequence
(a;)$2, in the space (F(X),d).

Let € > 0. There exists n € N such that 1/n < €. Note that d(a,bn) <
1/n. There exists N € N such that d(b,,an) < 1/n, for all m > N. Then

A~

d(a,am) < 1/n, for all m > N, whence the assertion follows.
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O
We note that the corresponding results for the functor of probability
measures is proved in [2].

5 Remarks and open questions

Question 5.1. A metric space (X,d) is said to be uniformly disconnected
[6, 7] if, there exists ¢ € (0,1) such that, for every natural n and every
g, T1,--.,Tn € X, we have

cd(zg, zp) < max{d(x;—1,2;) |i=1,...,n}.

The uniformly disconnected spaces and Lipschitz maps form a category.
A natural question arises of extension of the mentioned results over this
category.

Question 5.2. In [10], metric spaces with subdominant ultrametric are
considered and characterized. We leave as an open problem whether there
exists a natural metric on the spaces of the form F(X), for the mentioned
spaces.

A normal functor F'is called finitary if F' preserves the class of finite sets.
We conjecture that, for a finitary functor F' with finite support, the topology
on F(X) induced by the ultrametric d coincides with the initial topology on
F(X), for any ultrametric space (X, d).
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HOPMAJIBHI ®YHKTOPU B KATETOPII
YJIBTPAMETPUNYHUX ITPOCTOPIB

Oanercandp CABYEHKO

XepcoHchKUil AepKABHUIN arpapHuil YHIBEPCUTET

Mu nokazyemo, 1o KOoxKeH HOpMaabHuit YHKTOP, sSKuil i€ B KaTeropii
KoMmakTHEX Taycaopdosux npocropie COMP, susnauae HyHKTOP B Ka-
Teropii UMET yaprpaMerpudamx mpocTOpiB Ta HEPOITATYIOUNX Bigobpa-
JKeHb. MW BCTAHOBIIOEMO JIESTK] BJIACTHRBOCTI OJAEPKAHNX TTPH IIHOMY (DYHKTO-
pie. 30KpeMa, ToKazyeMo, 10 ojepkati (QyHKTOPH 36epiratoTh KIac MOBHUX
VABTPAMETPUIHUX TTPOCTOPIB - 1ef bakT OyB panite BigoMuii 171t hyHKTOPA
rinepupocTopy ta dpyaKTOpa MiMoBipuicaux Mip. [lokazyemo Takox, 1mo ko-
JKHE TIPUPOJIHE TIepeTBOperHst HopMaabaux (hyrkTopis B COMP Busnauvae
MIPUPOIHE MepeTBOPEeHHs BiAmoBiaunx ¢pyurTopis v kareropii UMET.



