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We consider a two-magnon systems in an v— dimensional isotropic
Non-Heisenberg ferromagnet with spin value S = 2 and nearest- nei-
ghbor interactions. Spectrum and bound states (BS) of the system
for all values of full quasi-momentum A, and for arbitrary value of
lattice dimensionality v, and for all values of Hamiltonian parameters
are investigated. We show that (i) for arbitrary v > 2 and for full
quasi-momentum in the form A = (Aj;Ag;..5A)) = (Ao; Aog; .5 Ao)
the change of energy spectrum of the system is similar to that
observed in the case of ¥ = 1. In this case the operator Hs wi-
th J + 5J; — 83J2 + 773J3 # 0 has only one additional BS. (ii)
The energy z of this additional BS is degenerate v — 1 times. (iii)
If A # (Ag; Ao; -3 Ag), we show the existence no more 2v+ 1 BS in the
system in v—dimensional lattice.

Two-magnon systems have attracted the attention of many researchers.
Probably, such systems were first discussed by Bethe [1] in the context of
one-dimensional integer-valued lattices. Bethe proved that no more than
one bound state (BS) of the system can exist in the case of one dimensi-
onal isotropic ferromagnet. Worts [2| examined the two-magnon system in a
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d—dimensional integer-valued lattice for an arbitrary d and proved that in
this case, the system has 0,1, 2, ..., d BSs.

Majumdar [3] investigated the two-magnon system in a one-dimensional
Heisenberg ferromagnet with a coupling between nearest and second nearest
neighbors for the full quasi momentum A = 7. He found the spectrum and
the BSs of the system numerically. In [4], such a system was examined for the
case of a one- dimensional Heisenberg isotropic ferromagnet with a nearest-
and second nearest-neighbor interactions for A = m and A = 7. The spectrum
and the BSs of the system for these values of A were studied with numerical
methods. Gochev [5] considered the two-magnon system in a one-dimensional
Heisenberg longitudinal ferromagnet with a coupling between nearest and
second nearest neighbors for an arbitrary full quasi momentum. He investi-
gated the spectrum and the BSs of the system analytically.

The two-magnon systems in the anisotropic Heisenberg model with
a nearest-neighbor interaction were addressed in [6]. The focus in [7]
was on two-magnon systems in a one-dimensional anisotropic Heisenberg
ferromagnet with a interaction between nearest and second nearest nei-
ghbors. The spectrum and the BSs of such systems were investigated for
all values of the full quasi momentum.

The usual starting point for theoretical studies of magnetically organized
matter is the Heisenberg exchange Hamiltonian (with an arbitrary spin s)

H=17Y (SnSmir), (1)
m,T
where J is the bilinear exchange interaction parameter for nearest-neighbor
atoms, Sy, = (S%; SH.; SZ)) is the atomic spin operator of the m th node of the
v— dimensional integer-valued lattice Z¥, and 7 denotes summation over the
nearest neighbors. However, the actual isotropic spin exchange Hamiltonian
with an arbitrary spin s has the form (8]

2s
H = Z Z J?L(gmgnz+7)na (2)

m,T n=1
where J, are the multipolar exchange interaction parameters for nearest-
neighbors atoms. Hamiltonian (2) coincides with Hamiltonian (1) only for
s = 1/2, while there exist terms with higher powers of §m§m+T up to
(SimSmir)? inclusive for s > 1/2. These terms be taken into account. Hami-

Itonian (2) is called the non-Heisenberg Hamiltonian.

Spectrum and BSs of two-magnon system in the non-Heisenberg
ferromagnet with the bilinear and biquadratic exchange interactions were
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studied in works [9-16]. The spectrum and the BSs of two-magnon systems
in a non-Heisenberg ferromagnet with coupling between nearest neighbors
by bilinear and biquadratic interactions were investigated in [9-13|. Di-
fferent methods, such as the Green’s function method, the molecular field
approximation method, the random phase approximation method, numeri-
cal methods, and the use of the creation and annihilation operators through
the Holsten-Primakoff transformation, Dyson transformation, Dyson-Maleev
transformation, Golghirch transformation, and others, were applied in these
works. In [14-15] , the spectrum and the BSs of this system were investi-
gated for the case of a one-dimensional non-Heisenberg ferromagnet with
s = 1 and with a coupling between second nearest and third nearest nei-
ghbors respectively. The values of the Hamiltonian parameters for which the
BSs exist were found, and the energies of these BSs were calculated. In [16],
the spectrum and the BSs of two-magnon system were investigated in a v-
dimensional non-Heisenberg ferromagnet with s = 1 and with a coupling
between nearest neighbors.

The spectrum and the BSs of two-magnon systems in a non-Heisenberg
ferromagnet with coupling between nearest neighbors by bilinear and bi-
quadratic and quadrupolar interactions were investigated in [17-18].

In the present work we considered two-magnon system in a v— dimensi-
onal integer-valued lattice Z¥ with nearest- neighbor interaction with the
bilinear and biquadratic and quadrupolar and octupolar exchange coupli-
ngs, i. e. in a v— dimensional isotropic non-Heisenberg ferromagnet wi-
th spin value s = 2. We is described the change of the energy spectrum
of the system in the one-dimensional lattice for all values of Hamiltonian
parameters and for arbitrary value of full quasi-momentum (see Theorem
4-5). We show that for arbitrary v > 2 and for full quasi-momentum A in
the form A = (Ag; Ag; ...; Ag) € T” the change of the energy spectrum of the
system is similar to that investigated in the case of v = 1. Only one addi-
tional BS ¥ appears, whose energy value z. This energy level is degenerate
v — 1 times. For all other values of the full quasi momentum A of the system
the operator Hy has no more than 2v+ 1 BSs (taking the energy degenerati-
on order into account) with the energy values lying outside the continuous
spectrum of the system.

The methods of this study differ by their simplicity and generality . This
investigation is based on finding zeros of the Fredholm determinant of the
Hamiltonian.
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The system Hamiltonian

—Jo Z(§m§m+T)3 —J3 Z(§m§m+r)4a (3)

acts in the symmetrical Fock’s space H. Here S, is the atomic spin s = 2
operator in the node m, J > 0 and J; > 0 and J2 > 0 and J3 > 0 are the bi-
linear and biquadratic and quadrupolar and octupole interaction parameters
for nearest- neighbor atoms of the lattice, and 7 denotes summation over
the nearest neighbors. We set St = S% 4 iS},. Let g be the so-called
vacuum vector, which is fully determined by the conditions S}t oo = 0 and
SZ .00 = 2¢0, ||po|| = 1. The vectors S,,,.S,, o describe the state of the system
of two magnons located at the nodes m and n. Let Ha be the closure of the
space formed by all linear combinations of these two vectors. This space is
called the two-magnon space of the operator H.

Proposition 1. The space Ho is invariant with respect to the operator
H. The operator Hy = H/15 is a bounded self-adjoint operator. It generates
the bounded self-adjoint operators Hs, acting in the space lo((Z¥)?) according
to the formula

(Ef)(pa q)=—J Z{((Sp,q+‘r+5p+r,q—8)f(p; Q) +1/2(4=0pg4-) f(P—T:0)+
DT
+1/2(4 = Opirg) f(p30 = 7) +1/2(4 = Opirg) f( + 7, 0)+
+1/2(4=bp,g+-)f(p;a+7)} = N1 Z {(=0p,g+r = Optr,g +32+126p4) f (P q)—

pa;T
_1/2(56p,q+7 + 125p,q + 16)f(p -7, Q) - 1/2(55p+7,q + 125p,q + 16)f(p +, Q)_
~1/2(58p g7 + 12854 +16) f(p; ¢ +7) — 1/2(56p1rg + 12054 +16) f(p; g —T)+
+60pqf (P =75 —T) + 60pgirf(p—T5q¢+T) + 60p1rgf(p+ 750 —T)+

+60p0f (P+T3q+7) = T2 > {(—238p 947 —230p 17— 128—1326,4) f(p: q)+
biq;T

+1/2(835p7q+7+1325p,q+64)f(p§ CH‘TH‘1/2(835p+nq+1325p7q+64)f(17+7; Q)‘*’
+1/2(830p,¢4++1320p,4+64) f (p—7, ¢+1/2(836p 47,4 +1320, 4 +64) f(p; g—T7)—

—666p,f(p — 759 —T) = 665p0f(p+ 739+ 7T) =600 g1+ f(p—T5q+T)—
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—~6p-trqf (P+T; q_T)}_JZ%Z{(2955p,q+r+2955p+nq+512+11165p,q)f(p§ q)—
DT

—1/2(T730p.gsr+ 11168, 4+256) f(p; g+7) — 1/2(TT364.r.q+ 11165, 4+ 256) x
xf(p+7;q) —1/2(7730p47,q + 11160, 4 + 256) f(p; ¢ — 7)+

+5586p,qf (0 — 754 — T) + 55860 f (0 + T30 + T)+

+4T46p g4 f(p — T30+ 7) + 4T46p 170 f (P + 759 — T) }, (4)

where Oy ; is the Kronecker symbol. The operator Hy acts on the vector ¥ €
Ha according to the formula

HyU = "(Haf)(p; 0)S;, Sy 0. (5)

p,q

Proof. The proof is by direct calculation in which we use the well-known

commutation relations between the operators S;! S, , and S7,. O

Lemma 1.The spectra of the operators Hy and Hy coincide.

Proof. Because Hy and H» are bounded self-adjoint operators, it follows
that if A € o(Hz), then the Weyl criterion (see [20]) implies that there is
sequence {¥,,}2°; such that ||¥,|| = 1 and lim,,_, ||(H2 — A) ¥y, || = 0. We
et W = ok 5, 55, S, o Then [[(H2 = NP = (12 —

)‘)‘llna (H2_)‘)\I’n) = Zp,q |(H2fn)(p§ Q)_)‘fn(p; Q)|2 - = HHZFn_/\FnH2 -
0 as n — oo, where F,, = > fu(p;q). It follows that A € o(Hs).
Consequently, o(Hy) C o(Hz). Then, by the Weyl criterion, there is a
sequence {F,}°; such that ||F,|| = 1 and lim, . ||(H2 — A\)F,|| = 0.
Setting Fp, = 3, fu(p30); [|1Full = (30,4 | fn(p; @)[*)!/?, we conclude that
Wl = [|[Fol| = 1 and [[(H2 — M) Fy|| = [|[(H2 — A)¥p|| — 0 as n — oo. This
means that A € o0(H3) and hence o(H2) C 0(Hz). These two relations imply
o(Hz) =o(Hs). m)

As is seen, if vector ¥ = Zp’q f(p;q)S, Sy wo is an eigenfunction of Hy
with the eigenvalue z ¢ G, then F = Zpg f(p;q) is an eigenfunction of
the operator Ho with the same eigenvalue z ¢ G, and this eigenvalue has
the same multiplicity. Therefore, to investigate the spectrum of the operator
Ho, it suffices to consider that of the operator Hs acting in l2(Z" x Z¥) by
formula (4).
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The objective of this work is to investigate the spectrum and the BSs of
the operator Hs, for which the momentum representation is convenient. Let
F be the Fourier transformation

F:1((2")?) = La((T")%) = Ha,
where T" is a v— dimensional cube, T' = [0; 27) is a interval with the normali-
zed Lebesgue measure d\, A\(TV) = 1. Let Hy = FHoF L.

Proposition 2. Operator Hy is a bounded self-adjoint operator and it
acts in the space Ha according to the formula

(Faf) (w3 y) = hlws ) f (3 ) + / (O f(tety—td,  (6)

where h(z;y) = 16(J — 4J1 4 165 — 64.J3) 7 (1 — cos T cosTisbe),
hl(:n;y;t) = —24(J1 —11J5 + 93J3)><

14

X Z[l — ZCosxi ;— Yi cosxi ; Yi +cos(xi+yi)] —4(J +5J1 —83J2 + T73.J3) X
i=1

v

X Z[cosxl ; Vi cost ; yZ]COS(mZ ;yl —ti),z,y,t €T,
=1

Proof. The proof is by direct calculation in which we use the Fourier

transformation in formula ( 4 ). O

It follows from Lemma 1 and from this fact that to investigate spectrum
of the operator Hs in the space Ha, it suffices to investigate the spectrum of
the operator Hy acting in the space Lo((T%)?) according to formula ( 6 ).

The following fact is important for further investigating the spectrum of
the operator Ho. Let the full quasi momentum of the system = +y = A be
fixed. Let Lo(I'p) be the space of functions that are quadratically integrable
over the manifold 'y = {(z;y) : = +y = A}. It is known [20] that the
operators Hy and the space Ha can be expanded into the direct integrals

fb:/ EBFIMA,?%Q:/ P HandA
v v

of the operators ﬁzA and the space 7:(21\ such that the spaces 7:(21\ are invari-
ant with respect to the operators Hap and the operator Hap acts in the space
Hop according to the formula

(Fanf1)(a) = ha(a)fa(e) + [ Tun(as) (o
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where hp(z) = h(x; A — ), hia(z;t) = ha(x; A — x5 t) and fa(z) = f(z; A —
x).It is known that the continuous spectrum of the operator Hoy consists of
the intervals GA = [ma; Ma], where ma = mingha(x), My = mazgzha(z).
The eigenfunction ¢ € Ly(T") of the operator Hop corresponding to
the eigenvalue zp ¢ G is called the BS the operator ﬁg, and the quantity

zp is called the energy of this BS.
We consider the operator Ky,

(Ka(2)fa) () _/ fualzit) fa(t)dt.

Tv hA(t) —Z

This operator is totally continuous in the space Hap for values of z not
belonging to the set Gy = Imhp(x) = [ma; Mp). Let A% (2) = detD, where

dig  diz  diz... dip11
d21 da 2 do3..... d2 41
D = i _ ] .
du+1,1 dl,+1,2 dy+173 ..... du+1,u+1
Here y ]
dll :1—243/ gA(S) $1A89... 81,7
’ v ha(s) — z
dpp11 = —24B fAk(Sk)gA(S)dsldSQ...dSV’k 12
’ Tv ha(s) — =z
©A (Sk>d81d82...dsy
dy 41 = —4C : k=12,..
1,k+1 - hin (5) — 2 , 2,01,
fa, (s1)on, (sk)dsidss...ds,
d =1-4C : E k=1,2,..
k+1,k+1 - ha(s) — 2 , 2, U,
diy1,i41 = —4C Mdsldsz..dsy,

v ha(s) —z
k=1,2,.v,i=1,2,..,v,i # k.
In these formulas,

v

A; A;
ga(s) = Z[l + cos A; — 2 cos 5 cos(— — Si)],

2
=1
A A
o, (sK) = cos(— — si) — cos?k,
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A
Ia,(sk) = 003(7}f —sk),k=1,2,..,v,AeT" s T".

Lemma 2. A number z = zo ¢ Gy is an eigenvalue of the operator .ErQA
if and only if it is a zero of the function AX(2), i. e., AX(20) = 0.

Proof. In the case under consideration, the equation for the eigenvalues
is an integral equation with a degenerate kernel. It is therefore equivalent to
a system of linear homogeneous algebraic equations. It is known that such a
system has a nontrivial solution if and only if its determinant is equal to zero.
In this case, the determinant of this linear homogeneous algebraic system is
equal to function A (2). |

Weset A=J—4J1+16J,—64J3,B=J1—11J,4+93J3,C = J +5J1 —
83Ja + 773J5.

Theorem 1. Let A = 0 and v be arbitrary. Then the operator Hj has two
BSs @1 and 2 ( not taking the order of the energy degeneration into account)
with the energy values zy = —18B and zo = —24Blv + 1 + Y./ cosA,]
and z1 is degenerate v — 1 times, while zo is not degenerate, z; ¢ Gp,i =
1;2, for all A € TY, i.e., the energy values of these BSs lie outside the
continuous spectrum domain of the operator Hyy. When B = 0, this BSs
vanishes because it is incorporated into the continuous spectrum.

Proof. If A =0, then hp(s) =0, and

2C 2C 24B <&
AX(z) = (1—|—7)V*1 X {(1—1—7)[14-7 (14 cosA;)]—
i=1
96 BC A;
—— ZCOSQ?}.
i=1

and C' = 9B. Solving the equation AX(z) =0, we prove the theorem. O

Note. In the theorem, the zeroth-order degeneration corresponds to the
case where there is no BS.

Let m = (m;m;..;m) € T.

Theorem 2. Let A = 7,C # 0. Then the operator Ho has only one BS
w with the energy value z = 16vA — 2C and this energy level is degenerate
v times. In addition, if C > 0, then z < mp, and if C < 0, then z > Mj.

When C = 0, this BS vanishes because it is incorporated into the continuous
spectrum.
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Proof. The proof is based on the equality hp(z) = 16vA with A = =
and also on the corresponding form of the function A% (2). O
_ Theorem 3. Let C' = 0 and v be an arbitrary number. Then the operator
Hy has at most one BS, and the corresponding energy level is not degenerated.

Proof. If C = 0, the relations A = —9B, and hia(z;t) = —24B Y 7 |[1—
2005%003(% — ;) + cosN;], hp(x) = 16A% 7 | [1— cos%cos(% — ;)]
hold. Using the form determinant A% (z) and solving the corresponding
equation, we obtain the statement in Theorem 3. O

Denote the four (J; Ji; Ja; J3) by P and introduce the following ranges of
the four P for v = 1;
FF={P:A<0,B<0,C<0},F/5={P:A>0,B>0,C >0},F; =
{P:A>0,B>0,C<0}, F,={P:A<0,B<0,C>0}F;={P:A<
0,B>0,C<0}Fg={P:A>0B<0,C>0}, F;={P:B=0,A=
C>0}Fs={P:B=0,A=C<0}.

In the case where v = 1, the change of the energy spectrum is described
by the following theorems.

Theorem 4.

1. Let P € Fy and A €]0;7] (A €]m;27])

a) If C # 12B then the operator Hy has two BSs ¢1 and oo with the
corresponding energy levels 21 < mp and zo > M.

b) If C = 12B then the operator Ho has only one BS ¢ with the energy
level z < my.

2. Let P € F5 and A €]0; 7] (A €]m;27])

a) If4AA < C < 123,005% > %, (4A < 12B < C), then the operator
Ho has three BSs ¢;,i = 1,2,3; with the corresponding energy values z <
ma,t=1,2;23 > My.

b) If C <4A < 123,005% > %, (C > 12B = 4A), then the operator
Hy has two BSs ;i = 1,2; with the corresponding energy values z1 <
map, 22 > Mp. In this case third BS vanishes because it is incorporated into
the continuous spectrum.

¢) If C < 12B < 44,cos5 > 1S5, (C > 12B,A > 3B) then the
operator Ho has only one BS ¢ with energy value z > Mj.

d) If C = 12B then the operator H> has only one BS ¢ with energy value
z < MA.

e) If C > 12B  (C < 12B) then the operator Hy has two BSs ¢1, o
with corresponding energy values z1 < mp, 2o > Mj.



Investigation of spectrum and bound states... 293

3. Let P € F3 and A €]0; 7] (A €]m;27]).
a) If C > —12B then the operator Hj has a two BSs 1 and @o with the
corresponding energy values z1 < mp and 2o > My.

b) If C < —12B then the operator Hy has only one BS ¢ with energy
value z < my.

4. Let P € Fy and A €]0;7[ (A €]m; 27)

a) If 4A - 12B - C > O,COS% > m (cos% # %), then the
operator Hy has three ( two) BSs pii = 1,2,3;(pj,j = 1,2;) with the
corresponding energy values z < mp,k = 1,2;23 > My (21 < mp, 22 >
My).

b) If4A = 12B — C' > 0,155 < cos§ < pqap—¢ or 4A—12B - C <

0 (cos% = 12B) then the operator Hy has only one BS ¢ with the energy

value z > M.
5. Let P € F5 and A €]0; 7] (A €]m;27]).

a) If cos% lgB,C’ > 4A (0052 < 12B,C > 4A), then the operator
Hy has three BSs @1, @2, @3 with corresponding enerqy levels z; < mp,i =
1,2; 23 > Mjy.

b) If C < 44,4A — 12B — C < 0,cos% > 5z (O < 4A,4A —

12B - C < 0,6085 < —m), then the operator Ha has three BSs
V1, P2, 3 with the corresponding energy values z; < mp,1 =1,2; 23 > M.

¢) IfC <4A,4A—12B—C <0,—155 < cos§ < 155 (C <4A,4A—
12B-C < 0,— 55— < cosy < @) or C < 4A,4A - 12B - C >
0, (C>4A,4A—12B —C >0), then the operator Hy has only one BS ¢
with energy value z > M.

d) If cos% = 15370 > 4A (cos% = 15370 > 4A), then the operator

ﬁg has two BSs @;,1 = 1,2; with the energy values z1 < mp, 2o > M.

e) If cos% = 123,0 < 4A (cos% > %,C’ < 4A), then operator Hy
has only one BS ¢ with the energy value z > Mj.

f) If 00512\ 1203 (005/2\ > SB) then the operator Ho has two BSs
wi,© = 1,2; with the corresponding energy values z1 < my, z9 > M.

6. Let P € Fs and A €]0;7[ (A €]m;27]).

a) If cos% < —% (cos% > %), then the operator Hy has two BSs

©1, 2 with the corresponding energy values 21 < mp, zo > Mjy.
b) If cos% > —% (cos% < 123) then the operator Hy has only one
BS ¢ with the energy value z < my.
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7. Let P € Fy and A €]0;7[ (A €]m; 27]).

Then the operator Ho has two BSs 1, p2 with the corresponding energy
values z1 < mp, z9 > M.

8. Let P € Fg and A # 0.

Then the operator Ho has two BSs 1, p2 with the corresponding energy
values z1 < mp, z9 > M.

Theorem 5. Let A = 0.

1. a) If P € F1,C > 12B then the operator Hy has two BSs V1, P2 with
the corresponding energy values z1 < mp, 2o > Mjy.

b) If P € F1,C < 12B then the operator Hj has only one BS ¢ with the
energy value 2 < my.

2. a)If P € F5,4A < C < 12B, then the operator Hy has three BSs
i 1 = 1,2,3; with the corresponding energy values z; < mp,j = 1,2;23 >
My.

b) If P € F5,C < 4A,C < 12B, or P € F5,4A < 12B < C, then the
operator Hy has two BSs p;,i = 1,2; with the corresponding energy values
z1 < mp,zo > M.

c) If P € F»,C = 12B,C > 4A, then the operator Hy has only one BS
© with the energy value z < my.

d) If P € F5,C = 4A > 12B, or P € F5,12B < 4A < C, then the
operator Ho has only one BS ¢ with the energy value z > M.

e) If P € F5,C = 12B < 4A, or P € F5,12B < 4A < C, then the
operator Hy has no BS.

3. a) If P € F3,C < —12B, A > 3B, then the operator Ho has two BSs
i, t = 1,2; with the corresponding energy values z1 < mp, 2o > MAj.

b) If P € F3, A < 3B, then the operator Hj has only one BS ¢ with the
energy value z > Mj.

¢)If Pe F3,C > —12B, A > 3B, then the operator f{g has only one BS
© with the energy value z < my.

4.a) If P e Fy,C > —12B, then the operator Hy has two BSs wi,t=1,2;
with the corresponding energy values z; < mp,1 = 1,2;

b) If P € Fy,C = —12B, then the operator Hj has no BS.

c) If P € Fy,C < —12B, then the operator Hy has only one BS ¢ with
the energy value z < my.

5.a)If Pe F;5,—12B < C < 4A,C > 2A—6B, then the operator Hy has
two BSs ;1 = 1,2; with the corresponding energy values z; < mp,1 = 1,2;
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b) If P € F5,-12B < C <4A,C <2A—-6B, or P € F5,C = —12B <
4A, then the operator Ha has no BS.

) IfPeF5,C=—12B>4A, or P € F;,C < —12B, then the operator
Hy has only one BS with the energy value z < my.

6. a) If P € Fs,4A < C < —12B, then the operator Hy has two BSs
it = 1,2; with the corresponding energy values z; > Mp,1 = 1,2.

b) If P € Fs,C = 4A > —12B, or P € FI5,C = —12B > 4A, or
P e Fs,C < —12B,C < 4A, then the operator Hy has no BS.

¢) If P € Fg,C =—12B <4A, or P € F5,C > —12B,C # 4A, then the
operator Hy has only one BS ¢ with the energy value z > Mjy.

7.If P € F; (P € Fy), then the operator Hy has only one BS ¢ with the
energy value z > My(z < mp).

A sketch proof of Theorems 4-5 is given below. In the case under
consideration, the equation for the eigenvalues is an integral equation wi-
th a degenerate kernel. It is therefore equivalent to a system of linear
homogeneous algebraic equations. It is known that such a system has a
nontrivial solution if and only if its determinant is equal to zero. In this
case, the equation A (z) = 0 is therefore equivalent to the equation stating
that the determinant of the system is zero. Expressing all integrals in the
equation AX(z) = 0 through the integral

dt
J(z) = /T IO

we find that the equation A (z) = 0 is equivalent to the equation

J(z) ={-C(z — 16A) + 16 A(4A — 12B — 0)0032%}X (7)

x{C(z — 164)> + 16A(12B + C)(z — 16A)0032% n 307214236054%}_1‘

Because m is a continuous function for z ¢ G and

/ dt
()] = /T e

the function J(z) is an increasing function of z for z ¢ G . Moreover, J(z) —
0as z— —o0, J(z) = +ooas z — mp —0, J(z) — —o0 as z — My +0, and
J(z) — 0 as z — +oo. Analysis of Eq. (7) outside the set Gy = [ma; M|
leads to the proof of Theorems 4-5.
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The energy spectrum in the case where v = 2 for the full quasi momenta
of the form A = (A1; A2) = (Ag; Ap) is described below. Tt is easy to see that
if the parameters J, Ji, Jo, J3 and A satisfy the conditions of Theorems 4-5,
the statements of the theorems are true. Only one additional BS ¥ appears,
whose energy value is Z < mp or Zpy > My if C >0 or C < 0. If C' =0, the
operator Hy has no additional BS.

The proof of this statement is based on the fact that if v = 2 and A =
(Ao; Ag), then the function A% (z) has the form

[COS(% —51) — COS(% — 59)]?
T2 hA(S) —Zz

AX(z) =[1 —-4C ds] x ¥(z), (8)

where

1+ cosAg — COS%[COS(% —s1)+ COS(% _ 52)]d81d82}>< (9)

U(z)={1- 48B/

T2 ha(s1;82) — =z
AO AQ AO A0
cos(52 — s1)[cos(2 — s1) + cos(22 — sg) — 2cos32
x{1 - 8C ( 2 1)[cos( 2 1) ( 2 2) 2 ]dsldsz}—
T2 ha(s1;s2) — 2
Ao _ _ Ao
rgspe [ S ) TS e

T2 ha(s1;82) — 2

dSldSQ.

/ Cos(% — 51)x{1 4 cos Ag—cos %[cos(% —s1)+ 008(% —s9)|}
X
T2 ha(s1;82) — 2

The equation A% (z) = 0 is therefore equivalent to the equation

(Ao _ enaf(Do 2
g [l ms) meos(F m ) (10)
T2 ha(s1;s2) — 2
and
Ya(z) = 0. (11)

It is easy to see Eq.(10) has a unique solution Z < mp if C > 0; if
C' < 0, this solution satisfies the condition Z > M. If C' = 0, Eq. (10) has
no solution. Expressing the integrals in Eq. (11) through the integral

J(Z) :/ d$1d82 ,
72 ha(s1;s2) — 2
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we obtain an equation of the form
na(2)J(2) = €a(2),
where
2 2o 9 1Mo
na(z) = C(z — 32A)° + 32A(C + 6B)cos ?(z — 32A) + 6144 A*Bcos >

and
A
Er(z) = —C(z — 32A) + 32A(3A — 6B — C)003270.

In turn, for na(z) # 0, the latter equation is equivalent to the equation of
the form

J(z) = . (12)

Analyzing Eq. (12) outside the set Go and taking into account that the
function J(z) is monotonic for z ¢ [ma; Ma], we obtain statements similar
to the statements in Theorems 4-5.

For all other quasi momenta A = (A1;A2), A1 # Ao, these exists sets
Gj,j = 0,5, of the parameters J, Ji, J2, J3 and A such that in every set G;
the operator Ho has exactly j BSs (taking the energy degeneration order
into account) with the corresponding energy values 2z, ¢ Ga,k = 1,5.

Indeed, in this case and for v = 2, the function AX(z) has the form
A (z) = detD, where

dig dip dig
D= |dy1 dop do3|,
d31 dza d3gs
here
2—252 cosBicos(& — 5;) + 52 cosA;

T2 ha(s) — =z

Ag Ag
COS| - — S) — COS—~
(5 ) 2 dsidss, k =1,2;

d =—4C
Lk+1 - ha(s) — 2

dk+1,1 = —24Bx
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cos(% —sE)2—-2 2321 cos%cos(% —8i) + Z?:l cosh\;
X dSldSQ,
T2 ha(s) — z
k=1,2;
2( Ak Ak Ag
cos®(ZE — sg) — cosZEcos(=ZE — si)
d =1-4C 2 2 2 dsidsy, k= 1,2;
k+1,k+1 - hA(s) e $1a52 y 45
A1 Ao Ao Ay
cos(5L — s1)cos(B2 — s9) — cosZ2cos(BE — s
oy = _40/ (5~ s1)eos(F — 52) 3 c0s(5 1)dsld32,
' T2 ha(s) —z
A1 Ao A Ao
cos(5 — s1)cos(5F — s2) — cosSrcos(ZE: — s
d32 = —4C ( 2 1) ( 2 2) 2 ( 2 2)d81d82,
’ T2 hA(S) —Z
AeT? seT?

Expressing all integrals in the equation A%(z) = 0 through J(z) and
rearranging algebraically, we reduce the latter equation to the form

Oa(2)J(2) = xa(2), (13)

where O (z) is the fifth-order polynomial in z and ya(z) is a lower-order
polynomial in z. Analyzing Eq. (13) outside the set G and taking into
account that the function J(z) with z ¢ [ma; Ma] is monotonic, we can
eagily verify that the equation has no more that five solutions outside the
set Ga.

We now consider the case of v = 3. Let the full quasi momentum have
the form A = (A1, A2, A3) = (Ao, Ao, Ag). If the parameters Ay, J, Jq, and
Jo satisfy the conditions in Theorems 4-5, then statements similar to those
in the theorems are true. Only one additional BS 7 appears, whose energy
value is Z. This energy level is twice degenerate and zZ < mp or Z > My
if C > 0 or C' < 0. This additional BS vanishes when C' = 0 because it is
incorporated into the continuous spectrum.

To prove this, we note that in this case, the function A (z) has the form

[cos(% —51) — cos(% — 59)]

2
dsydsydss]?) 78
T3 ha(s) — z s1dsads]“a(2),s € T7,

AY (2)=[1-4C
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where

[3 4 3cosAg — 2003%(2?:1 cos(% —5;))]

QLA(Z) = [1—243/ d81d82d83]><
T3

ha(s) —
Ay 3 Ao _ 3cosho
x{1—4C cos(F — s1)[D iy COS( 2 — i) — Scosy ]d81d52d83}_
T3 hl\( )
—288B(C'x
Ao Ao
Ao _ Ao —2 P
></ cos(32 — 51)[3 + 3cosAg cose ZZ jcos(F —s )]dsldszdsgx
T3 h‘A( ) -
Ao _ — Ao
x/ o 81) 2 dsydsadss.
T3 hA( )

Therefore the equation A (z) = 0 is equivalent to the equations

1 4c [ [COS(% —51) —;f(s()Ao — 52)]2d51d32d53]2 _ 0 (14)
and
¥a(z) = 0. (15)

It is easy to see that Eq. (14) has a unique double solution 2 C 40
and z° < my or z/ > My if C > 0 or C < 0. Expressing all integrals in Eq.

(15) through J(2) = [,s d,fi‘gfdsj, we obtain the equation
in(2)J(z) = Op(2), (16)
where

na(z) = C(z — 48A)% + 48A(C + 6B)cos® A2 (z —48A) + 13824A2BCOSA2

and

A
Op(z) = —C(z — 48A) + 48A(3A - C — 63)6082?0.
If 77A~(z) # 0, Eq.(16) is, in turn, equivalent to the equation

@A(z)

J(z
5= na(z)

(17)
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Analyzing Eq. (17) outside the set G and taking into account that the
function J(z) for z ¢ G is monotonic, we prove the statements made above.

If A # (Ao, Ao, Ap), the system has at most seven BSs (taking the energy
degeneration order into account), and there exist sets Gg,k = 0,7, of the
parameters A, J,Jq,Jo and J3 such that in every set Gg, the system has
exactly k BSs. The energy values of these BSs lie outside the set GA. When
passing from one of these sets to another, either some additional BSs of the
operator Hy appear or some existing BSs vanish. In this case, function AR (2)
has the form AX(z) = detD, where

dig dip diz dig
doy1 doo do3 dogs

D= % %
d3g d32 d33z d3a
dgy dap daz daa
Here
dii=1-248 [ —9G) e dsdss,
73 ha(s) — 2
dy i1 = —AC Mdsldszds& k=1,2,3;

73 ha(s) — z

djpi11 = —243/ Mdad@ds& k=1,2,3
’ T3 hA(S) -z

dk+1 k+1 = 1-— 40/ fAk (8k>(PAk(Sk)d51d52d83, k= 1, 2, 3;
’ 73 ha(s)—z

dy o = —4C Pa () (38) g e e k= 1.,
’ T3 hA(S) —z

dirnn = —dC [ EMLRINGD 4 e =12
’ T3 hA(S) —z

P, (52) fas(53)

d3 4 = —4C
34 s ha(s)—z

d81 d82d83,
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PA3z (83)f/\2 (52)

ds1dsadss.
73 ha(s) —z 1452453

d473 = —4C

In these formulas,

& Ai A,
ga(s) = Z[l + cosA; — 20055003(? —si)],
i=1

A A A
I, (sk) = cos(?k — S) — cos%, on,(Sk) = cos(?lg —sk),k=1,2,3.

Expressing all integrals in the equation AX(z) = 0 through J(z) and

rearranging algebraically, we reduce this equation to the form J(z) = A]\Z\(é)),
where M (z) is a seventh-order polynomial in z, and Nj(z) is a lower-order
polynomial in z. Therefore, this equation has no more than seven solutions
outside the set Gp.

For an arbitrary v > 3 and A = (A1;A2;..5A)) = (Ao; Ao ...; Ag) the
change of energy operator spectrum is similar to that observed in the case of
v = 1. In this case the operator Hs with C' # 0 has only one additional BS.
The energy z of this additional BS is degenerated v — 1 times. For all other
values of the full quasi momentum A of the system, the operator H> has no
more that 2v+ 1 BSs (taking the energy degeneracy order into account) with
energy values lying outside the set Gp.

The proof of these statements is based on finding zeros of the function
A (2). Expressing all integrals in A% (z) through J(z), we can bring the
equation AX(z) =0 to the form

J(z) = (18)

where Dj(z) is a (2v + 1) th-order polynomial in z and Cj(z) is also a
polynomial in z whose order (with respect to Da(z)) is lower. Analysis
of Eq. (18) outside the set G leads to the proof of the statements made
above.
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JOCJITI2KEHHS CIIEKTPA I 3B’4IBAHUX CTAHIB
OIIEPATOPA EHEPTIIi IBOMATHOHHUX CUCTEM V¥
v—~BUMIPHOMY HETEN3EHBEPTIBChKOMY
OPEPPOMATHETUKY I3 SBHAYEHHAM CIIIHY S =2 TA I3
B3AEMO/AICIO HANBJINKUYNX CYCLIIB

Cadyana TALIIIY/IATOB

TucruryT anepuol dizuku, Y3bermbka Akamemiss Hayk, Tarkenr,
Yabekucran

Posrngsiaersea gBoMarHonna cucrema y V—BUMIpHOMY Hereitzenbepris-
CbKOMY (PEeppPOMArHeTHKY i3 3HAYEHHSM CIIHY S = 2 Ta i3 B3aEMO/IIEI0 Hali-
6mxaux cycigis. Jlocaiaxyerses cnekrp i 38’a3anuii cran (3C) mia Beix
3HAYEHb [IOBHOTO KBa3liMIrysibca A, jijisl TOBLIbHUX 3HAYEHB PO3MIPHOCTI I'pa-
TKU V 1 A/ BCIX 3HAYEHDb IMapaMeTpiB raMmiabToHiana. Mu mokasyemo, Io:

(i) amst moBibHOrO ¥ > 2 1 ;A MOBHOTO KBA3liMIynbCa y BUTAAL
A = (A1;A92;..5A,) = (Ag; Ap;...; Ag) 3MiHA eHEPreTHYHOrO CHEKTpa CH-
CTEMU JOCII/PKYEThCSH aHAJIOIIYHO K y BUIAJAKY ¥ = 1. B npomy Bumajky
omneparop Ho Mae emuuamii nomarkosuit 3C;

(ii) emeprii nmboro momarkosoro 3C z € ¥ — 1 —KpaTHO BUPOIZKEHUMU;

(iii) stkmo A # (Ag; Ag;-..; Ag), TO B v—BuMIpHI# rpaTii cucTeMa Mae He
6inpme, mixx 2v + 1 3C.





