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We consider a two-magnon systems in an ν− dimensional isotropic
Non-Heisenberg ferromagnet with spin value S = 2 and nearest- nei-
ghbor interactions. Spectrum and bound states (BS) of the system
for all values of full quasi-momentum Λ, and for arbitrary value of
lattice dimensionality ν, and for all values of Hamiltonian parameters
are investigated. We show that (i) for arbitrary ν ≥ 2 and for full
quasi-momentum in the form Λ = (Λ1; Λ2; ...; Λν) = (Λ0; Λ0; ...; Λ0)
the change of energy spectrum of the system is similar to that
observed in the case of ν = 1. In this case the operator H̃2 wi-
th J + 5J1 − 83J2 + 773J3 6= 0 has only one additional BS. (ii)
The energy z of this additional BS is degenerate ν − 1 times. (iii)
If Λ 6= (Λ0; Λ0; ...; Λ0), we show the existence no more 2ν +1 BS in the
system in ν−dimensional lattice.

Two-magnon systems have attracted the attention of many researchers.
Probably, such systems were �rst discussed by Bethe [1] in the context of
one-dimensional integer-valued lattices. Bethe proved that no more than
one bound state (BS) of the system can exist in the case of one dimensi-
onal isotropic ferromagnet. Worts [2] examined the two-magnon system in a
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d−dimensional integer-valued lattice for an arbitrary d and proved that in
this case, the system has 0, 1, 2, ..., d BSs.

Majumdar [3] investigated the two-magnon system in a one-dimensional
Heisenberg ferromagnet with a coupling between nearest and second nearest
neighbors for the full quasi momentum Λ = π. He found the spectrum and
the BSs of the system numerically. In [4], such a system was examined for the
case of a one- dimensional Heisenberg isotropic ferromagnet with a nearest-
and second nearest-neighbor interactions for Λ = π and Λ = π

2 . The spectrum
and the BSs of the system for these values of Λ were studied with numerical
methods. Gochev [5] considered the two-magnon system in a one-dimensional
Heisenberg longitudinal ferromagnet with a coupling between nearest and
second nearest neighbors for an arbitrary full quasi momentum. He investi-
gated the spectrum and the BSs of the system analytically.

The two-magnon systems in the anisotropic Heisenberg model with
a nearest-neighbor interaction were addressed in [6]. The focus in [7]
was on two-magnon systems in a one-dimensional anisotropic Heisenberg
ferromagnet with a interaction between nearest and second nearest nei-
ghbors. The spectrum and the BSs of such systems were investigated for
all values of the full quasi momentum.

The usual starting point for theoretical studies of magnetically organized
matter is the Heisenberg exchange Hamiltonian (with an arbitrary spin s)

H = J
∑
m,τ

(~Sm
~Sm+τ ), (1)

where J is the bilinear exchange interaction parameter for nearest-neighbor
atoms, ~Sm = (Sx

m; Sy
m; Sz

m) is the atomic spin operator of the m th node of the
ν− dimensional integer-valued lattice Zν , and τ denotes summation over the
nearest neighbors. However, the actual isotropic spin exchange Hamiltonian
with an arbitrary spin s has the form [8]

H =
∑
m,τ

2s∑

n=1

Jn(~Sm
~Sm+τ )n, (2)

where Jn are the multipolar exchange interaction parameters for nearest-
neighbors atoms. Hamiltonian (2) coincides with Hamiltonian (1) only for
s = 1/2, while there exist terms with higher powers of ~Sm

~Sm+τ up to
(~Sm

~Sm+τ )2s inclusive for s > 1/2. These terms be taken into account. Hami-
ltonian (2) is called the non-Heisenberg Hamiltonian.

Spectrum and BSs of two-magnon system in the non-Heisenberg
ferromagnet with the bilinear and biquadratic exchange interactions were
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studied in works [9-16]. The spectrum and the BSs of two-magnon systems
in a non-Heisenberg ferromagnet with coupling between nearest neighbors
by bilinear and biquadratic interactions were investigated in [9-13]. Di-
�erent methods, such as the Green's function method, the molecular �eld
approximation method, the random phase approximation method, numeri-
cal methods, and the use of the creation and annihilation operators through
the Holsten-Primako� transformation, Dyson transformation, Dyson-Maleev
transformation, Golghirch transformation, and others, were applied in these
works. In [14-15] , the spectrum and the BSs of this system were investi-
gated for the case of a one-dimensional non-Heisenberg ferromagnet with
s = 1 and with a coupling between second nearest and third nearest nei-
ghbors respectively. The values of the Hamiltonian parameters for which the
BSs exist were found, and the energies of these BSs were calculated. In [16],
the spectrum and the BSs of two-magnon system were investigated in a ν-
dimensional non-Heisenberg ferromagnet with s = 1 and with a coupling
between nearest neighbors.

The spectrum and the BSs of two-magnon systems in a non-Heisenberg
ferromagnet with coupling between nearest neighbors by bilinear and bi-
quadratic and quadrupolar interactions were investigated in [17-18].

In the present work we considered two-magnon system in a ν− dimensi-
onal integer-valued lattice Zν with nearest- neighbor interaction with the
bilinear and biquadratic and quadrupolar and octupolar exchange coupli-
ngs, i. e. in a ν− dimensional isotropic non-Heisenberg ferromagnet wi-
th spin value s = 2. We is described the change of the energy spectrum
of the system in the one-dimensional lattice for all values of Hamiltonian
parameters and for arbitrary value of full quasi-momentum (see Theorem
4-5). We show that for arbitrary ν ≥ 2 and for full quasi-momentum Λ in
the form Λ = (Λ0; Λ0; ...; Λ0) ∈ T ν the change of the energy spectrum of the
system is similar to that investigated in the case of ν = 1. Only one addi-
tional BS Ψ appears, whose energy value z. This energy level is degenerate
ν− 1 times. For all other values of the full quasi momentum Λ of the system
the operator H̃2 has no more than 2ν +1 BSs (taking the energy degenerati-
on order into account) with the energy values lying outside the continuous
spectrum of the system.

The methods of this study di�er by their simplicity and generality . This
investigation is based on �nding zeros of the Fredholm determinant of the
Hamiltonian.
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The system Hamiltonian

H = −J
∑
m,τ

(~Sm
~Sm+τ )− J1

∑
m,τ

(~Sm
~Sm+τ )2−

−J2

∑
m,τ

(~Sm
~Sm+τ )3 − J3

∑
m,τ

(~Sm
~Sm+τ )4, (3)

acts in the symmetrical Fock's space H. Here ~Sm is the atomic spin s = 2
operator in the node m, J > 0 and J1 > 0 and J2 > 0 and J3 > 0 are the bi-
linear and biquadratic and quadrupolar and octupole interaction parameters
for nearest- neighbor atoms of the lattice, and τ denotes summation over
the nearest neighbors. We set S±m = Sx

m ± iSy
m. Let ϕ0 be the so-called

vacuum vector, which is fully determined by the conditions S+
mϕ0 = 0 and

Sz
mϕ0 = 2ϕ0, ||ϕ0|| = 1. The vectors S−mS−n ϕ0 describe the state of the system

of two magnons located at the nodes m and n. Let H2 be the closure of the
space formed by all linear combinations of these two vectors. This space is
called the two-magnon space of the operator H.

Proposition 1. The space H2 is invariant with respect to the operator
H. The operator H2 = H/H2 is a bounded self-adjoint operator. It generates
the bounded self-adjoint operators H2, acting in the space l2((Zν)2) according
to the formula

(H2f)(p; q) = −J
∑
p;q;τ

{(δp,q+τ +δp+τ,q−8)f(p; q)+1/2(4−δp,q+τ )f(p−τ ; q)+

+1/2(4− δp+τ,q)f(p; q − τ) + 1/2(4− δp+τ,q)f(p + τ, q)+

+1/2(4−δp,q+τ )f(p; q+τ)}−J1

∑
p;q;τ

{(−δp,q+τ −δp+τ,q +32+12δp,q)f(p; q)−

−1/2(5δp,q+τ +12δp,q +16)f(p−τ, q)−1/2(5δp+τ,q +12δp,q +16)f(p+τ, q)−
−1/2(5δp,q+τ +12δp,q +16)f(p; q+τ)−1/2(5δp+τ,q +12δp,q +16)f(p; q−τ)+

+6δp,qf(p− τ ; q − τ) + 6δp,q+τf(p− τ ; q + τ) + 6δp+τ,qf(p + τ ; q − τ)+

+6δp,qf(p+τ ; q+τ)}−J2

∑
p;q;τ

{(−23δp,q+τ−23δp+τ,q−128−132δp,q)f(p; q)+

+1/2(83δp,q+τ +132δp,q+64)f(p; q+τ)+1/2(83δp+τ,q+132δp,q+64)f(p+τ ; q)+

+1/2(83δp,q+τ+132δp,q+64)f(p−τ, q)+1/2(83δp+τ,q+132δp,q+64)f(p; q−τ)−
−66δp,qf(p− τ ; q − τ)− 66δp,qf(p + τ ; q + τ)− 60δp,q+τf(p− τ ; q + τ)−
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−60δp+τ,qf(p+τ ; q−τ)}−J3

∑
p;q;τ

{(295δp,q+τ+295δp+τ,q+512+1116δp,q)f(p; q)−

−1/2(773δp,q+τ +1116δp,q+256)f(p; q+τ)−1/2(773δp+τ,q+1116δp,q+256)×

×f(p + τ ; q)− 1/2(773δp+τ,q + 1116δp,q + 256)f(p; q − τ)+

+558δp,qf(p− τ ; q − τ) + 558δp,qf(p + τ ; q + τ)+

+474δp,q+τf(p− τ ; q + τ) + 474δp+τ,qf(p + τ ; q − τ)}, (4)

where δk,j is the Kronecker symbol. The operator H2 acts on the vector Ψ ∈
H2 according to the formula

H2Ψ =
∑
p,q

(H2f)(p; q)S−p S−q ϕ0. (5)

Proof. The proof is by direct calculation in which we use the well-known
commutation relations between the operators S+

m, S−p , and Sz
m. 2

Lemma 1.The spectra of the operators H2 and H2 coincide.
Proof. Because H2 and H2 are bounded self-adjoint operators, it follows

that if λ ∈ σ(H2), then the Weyl criterion (see [20]) implies that there is
sequence {Ψn}∞n=1 such that ||Ψn|| = 1 and limn→∞ ||(H2 − λ)Ψn|| = 0. We
set Ψn = 1√

16+8δp,q

∑
p,q fn(p; q)S−p S−q ϕ0. Then ||(H2 − λ)Ψn||2 = ((H2 −

λ)Ψn, (H2−λ)Ψn) =
∑

p,q |(H2fn)(p; q)−λfn(p; q)|2 = = ||H2Fn−λFn||2 →
0 as n → ∞, where Fn =

∑
p,q fn(p; q). It follows that λ ∈ σ(H2).

Consequently, σ(H2) ⊂ σ(H2). Then, by the Weyl criterion, there is a
sequence {Fn}∞n=1 such that ||Fn|| = 1 and limn→∞ ||(H2 − λ)Fn|| = 0.
Setting Fn =

∑
p,q fn(p; q), ||Fn|| = (

∑
p,q |fn(p; q)|2)1/2, we conclude that

||Ψn|| = ||Fn|| = 1 and ||(H2−λ)Fn|| = ||(H2−λ)Ψn|| → 0 as n →∞. This
means that λ ∈ σ(H2) and hence σ(H2) ⊂ σ(H2). These two relations imply
σ(H2) = σ(H2). 2

As is seen, if vector Ψ =
∑

p,q f(p; q)S−p S−q ϕ0 is an eigenfunction of H2

with the eigenvalue z /∈ Gν , then F =
∑

p,q f(p; q) is an eigenfunction of
the operator H2 with the same eigenvalue z /∈ Gν , and this eigenvalue has
the same multiplicity. Therefore, to investigate the spectrum of the operator
H2, it su�ces to consider that of the operator H2 acting in l2(Zν × Zν) by
formula (4).
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The objective of this work is to investigate the spectrum and the BSs of
the operator H2, for which the momentum representation is convenient. Let
F be the Fourier transformation

F : l2((Zν)2) ⇒ L2((T ν)2) ≡ H̃2,

where T ν is a ν− dimensional cube, T = [0; 2π) is a interval with the normali-
zed Lebesgue measure dλ, λ(T ν) = 1. Let H̃2 = FH2F−1.

Proposition 2. Operator H̃2 is a bounded self-adjoint operator and it
acts in the space H̃2 according to the formula

(H̃2f)(x; y) = h(x; y)f(x; y) +
∫

T ν

h1(x; y; t)f(t; x + y − t)dt, (6)

where h(x; y) = 16(J − 4J1 + 16J2 − 64J3)
∑ν

i=1(1− cosxi+yi
2 cosxi−yi

2 ),

h1(x; y; t) = −24(J1 − 11J2 + 93J3)×

×
ν∑

i=1

[1−2cos
xi + yi

2
cos

xi − yi

2
+ cos(xi +yi)]−4(J +5J1−83J2 +773J3)×

×
ν∑

i=1

[cos
xi − yi

2
− cos

xi + yi

2
]cos(

xi + yi

2
− ti), x, y, t ∈ T ν .

Proof. The proof is by direct calculation in which we use the Fourier
transformation in formula ( 4 ). 2

It follows from Lemma 1 and from this fact that to investigate spectrum
of the operator H2 in the space H2, it su�ces to investigate the spectrum of
the operator H̃2 acting in the space L2((T ν)2) according to formula ( 6 ).

The following fact is important for further investigating the spectrum of
the operator H̃2. Let the full quasi momentum of the system x + y = Λ be
�xed. Let L2(ΓΛ) be the space of functions that are quadratically integrable
over the manifold ΓΛ = {(x; y) : x + y = Λ}. It is known [20] that the
operators H̃2 and the space H̃2 can be expanded into the direct integrals

H̃2 =
∫

T ν

⊕
H̃2ΛdΛ, H̃2 =

∫

T ν

⊕
H̃2ΛdΛ

of the operators H̃2Λ and the space H̃2Λ such that the spaces H̃2Λ are invari-
ant with respect to the operators H̃2Λ and the operator H̃2Λ acts in the space
H̃2Λ according to the formula

(H̃2ΛfΛ)(x) = hΛ(x)fΛ(x) +
∫

T ν

h1Λ(x; t)fΛ(t)dt,
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where hΛ(x) = h(x; Λ− x), h1Λ(x; t) = h1(x; Λ− x; t) and fΛ(x) = f(x; Λ−
x).It is known that the continuous spectrum of the operator H̃2Λ consists of
the intervals GΛ = [mΛ; MΛ], where mΛ = minxhΛ(x),MΛ = maxxhΛ(x).

The eigenfunction ϕΛ ∈ L2(T ν) of the operator H̃2Λ corresponding to
the eigenvalue zΛ /∈ GΛ is called the BS the operator H̃2, and the quantity
zΛ is called the energy of this BS.

We consider the operator KΛ,

(KΛ(z)fΛ)(x) =
∫

T ν

h1Λ(x; t)
hΛ(t)− z

fΛ(t)dt.

This operator is totally continuous in the space H2Λ for values of z not
belonging to the set GΛ = ImhΛ(x) = [mΛ;MΛ]. Let ∆ν

Λ(z) = detD, where

D =




d1,1 d1,2 d1,3..... d1,ν+1

d2,1 d2,2 d2,3..... d2,ν+1
... ... ........ ...

dν+1,1 dν+1,2 dν+1,3..... dν+1,ν+1


 .

Here
d1,1 = 1− 24B

∫

T ν

gΛ(s)ds1ds2...dsν

hΛ(s)− z
,

dk+1,1 = −24B

∫

T ν

fΛk
(sk)gΛ(s)ds1ds2...dsν

hΛ(s)− z
, k = 1, 2, ..., ν,

d1,k+1 = −4C

∫

T ν

ϕΛk
(sk)ds1ds2...dsν

hΛ(s)− z
, k = 1, 2, ..., ν,

dk+1,k+1 = 1− 4C

∫

T ν

fΛk
(sk)ϕΛk

(sk)ds1ds2...dsν

hΛ(s)− z
, k = 1, 2, ..., ν,

dk+1,i+1 = −4C

∫

T ν

fΛk
(sk)ϕΛi(si)

hΛ(s)− z
ds1ds2...dsν ,

k = 1, 2, ..., ν, i = 1, 2, ..., ν, i 6= k.

In these formulas,

gΛ(s) =
ν∑

i=1

[1 + cos Λi − 2 cos
Λi

2
cos(

Λi

2
− Si)],

ϕΛk
(sk) = cos(

Λk

2
− sk)− cos

Λk

2
,
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fΛk
(sk) = cos(

Λk

2
− sk), k = 1, 2, ..., ν,Λ ∈ T ν , s ∈ T ν .

Lemma 2. A number z = z0 /∈ GΛ is an eigenvalue of the operator H̃2Λ

if and only if it is a zero of the function ∆ν
Λ(z), i. e., ∆ν

Λ(z0) = 0.

Proof. In the case under consideration, the equation for the eigenvalues
is an integral equation with a degenerate kernel. It is therefore equivalent to
a system of linear homogeneous algebraic equations. It is known that such a
system has a nontrivial solution if and only if its determinant is equal to zero.
In this case, the determinant of this linear homogeneous algebraic system is
equal to function ∆ν

Λ(z). 2

We set A = J − 4J1 + 16J2− 64J3, B = J1− 11J2 + 93J3, C = J + 5J1−
83J2 + 773J3.

Theorem 1. Let A = 0 and ν be arbitrary. Then the operator H̃2 has two
BSs ϕ1 and ϕ2 ( not taking the order of the energy degeneration into account)
with the energy values z1 = −18B and z2 = −24B[ν + 1 +

∑ν
i=1 cosΛi]

and z1 is degenerate ν − 1 times, while z2 is not degenerate, zi /∈ GΛ, i =
1; 2, for all Λ ∈ T ν , i.e., the energy values of these BSs lie outside the
continuous spectrum domain of the operator H̃2Λ. When B = 0, this BSs
vanishes because it is incorporated into the continuous spectrum.

Proof. If A = 0, then hΛ(s) ≡ 0, and

∆ν
Λ(z) = (1 +

2C

z
)ν−1 × {(1 +

2C

z
)[1 +

24B

z

ν∑

i=1

(1 + cosΛi)]−

−96BC

z2

ν∑

i=1

cos2 Λi

2
}.

and C = 9B. Solving the equation ∆ν
Λ(z) = 0, we prove the theorem. 2

Note. In the theorem, the zeroth-order degeneration corresponds to the
case where there is no BS.

Let π = (π; π; ...; π) ∈ T ν .

Theorem 2. Let Λ = π,C 6= 0. Then the operator H̃2 has only one BS
ϕ with the energy value z = 16νA − 2C and this energy level is degenerate
ν times. In addition, if C > 0, then z < mΛ, and if C < 0, then z > MΛ.
When C = 0, this BS vanishes because it is incorporated into the continuous
spectrum.
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Proof. The proof is based on the equality hΛ(x) = 16νA with Λ = π
and also on the corresponding form of the function ∆ν

Λ(z). 2

Theorem 3. Let C = 0 and ν be an arbitrary number. Then the operator
H̃2 has at most one BS, and the corresponding energy level is not degenerated.

Proof. If C = 0, the relations A = −9B, and h1Λ(x; t) = −24B
∑ν

i=1[1−
2cosΛi

2 cos(Λi
2 − xi) + cosΛi], hΛ(x) = 16A

∑ν
i=1[1− cosΛi

2 cos(Λi
2 − xi)]

hold. Using the form determinant ∆ν
Λ(z) and solving the corresponding

equation, we obtain the statement in Theorem 3. 2

Denote the four (J ; J1; J2; J3) by P and introduce the following ranges of
the four P for ν = 1;
F1 = {P : A < 0, B < 0, C < 0}, F2 = {P : A > 0, B > 0, C > 0}, F3 =
{P : A > 0, B > 0, C < 0}, F4 = {P : A < 0, B < 0, C > 0}, F5 = {P : A <
0, B > 0, C < 0}, F6 = {P : A > 0, B < 0, C > 0}, F7 = {P : B = 0, A =
C > 0}, F8 = {P : B = 0, A = C < 0}.

In the case where ν = 1, the change of the energy spectrum is described
by the following theorems.

Theorem 4.
1. Let P ∈ F1 and Λ ∈]0;π[ (Λ ∈]π; 2π[)
a) If C 6= 12B then the operator H̃2 has two BSs ϕ1 and ϕ2 with the

corresponding energy levels z1 < mΛ and z2 > MΛ.
b) If C = 12B then the operator H̃2 has only one BS ϕ with the energy

level z < mΛ.
2. Let P ∈ F2 and Λ ∈]0;π[ (Λ ∈]π; 2π[)
a) If 4A < C < 12B, cosΛ

2 > C
12B , (4A < 12B < C), then the operator

H̃2 has three BSs ϕi, i = 1, 2, 3; with the corresponding energy values zi <
mΛ, i = 1, 2; z3 > MΛ.

b) If C < 4A < 12B, cosΛ
2 > C

12B , (C > 12B = 4A), then the operator
H̃2 has two BSs ϕi, i = 1, 2; with the corresponding energy values z1 <
mΛ, z2 > MΛ. In this case third BS vanishes because it is incorporated into
the continuous spectrum.

c) If C < 12B < 4A, cosΛ
2 > C

12B , (C > 12B, A > 3B) then the
operator H̃2 has only one BS ϕ with energy value z > MΛ.

d) If C = 12B then the operator H̃2 has only one BS ϕ with energy value
z < mΛ.

e) If C > 12B (C < 12B) then the operator H̃2 has two BSs ϕ1, ϕ2

with corresponding energy values z1 < mΛ, z2 > MΛ.
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3. Let P ∈ F3 and Λ ∈]0;π[ (Λ ∈]π; 2π[).
a) If C ≥ −12B then the operator H̃2 has a two BSs ϕ1 and ϕ2 with the

corresponding energy values z1 < mΛ and z2 > MΛ.

b) If C < −12B then the operator H̃2 has only one BS ϕ with energy
value z < mΛ.

4. Let P ∈ F4 and Λ ∈]0;π[ (Λ ∈]π; 2π[)
a) If 4A − 12B − C > 0, cosΛ

2 > C
4A−12B−C (cosΛ

2 6= C
12B ), then the

operator H̃2 has three ( two) BSs ϕi, i = 1, 2, 3; (ϕj , j = 1, 2; ) with the
corresponding energy values zk < mΛ, k = 1, 2; z3 > MΛ (z1 < mΛ, z2 >
MΛ).

b) If 4A− 12B −C > 0,− C
12B < cosΛ

2 < C
4A−12B−C or 4A− 12B −C <

0 (cosΛ
2 = C

12B ), then the operator H̃2 has only one BS ϕ with the energy
value z > MΛ.

5. Let P ∈ F5 and Λ ∈]0;π[ (Λ ∈]π; 2π[).
a) If cosΛ

2 > − C
12B , C ≥ 4A (cosΛ

2 < C
12B , C ≥ 4A), then the operator

H̃2 has three BSs ϕ1, ϕ2, ϕ3 with corresponding energy levels zi < mΛ, i =
1, 2; z3 > MΛ.

b) If C < 4A, 4A − 12B − C < 0, cosΛ
2 > C

4A−12B−C (C < 4A, 4A −
12B − C < 0, cosΛ

2 < − C
4A−12B−C ), then the operator H̃2 has three BSs

ϕ1, ϕ2, ϕ3 with the corresponding energy values zi < mΛ, i = 1, 2; z3 > MΛ.

c) If C < 4A, 4A− 12B − C < 0,− C
12B < cosΛ

2 ≤ C
12B (C < 4A, 4A−

12B − C < 0,− C
4A−12B−C ≤ cosΛ

2 < C
12B ), or C < 4A, 4A − 12B − C ≥

0, (C > 4A, 4A− 12B −C ≥ 0), then the operator H̃2 has only one BS ϕ
with energy value z > MΛ.

d) If cosΛ
2 = − C

12B , C ≥ 4A (cosΛ
2 = C

12B , C ≥ 4A), then the operator
H̃2 has two BSs ϕi, i = 1, 2; with the energy values z1 < mΛ, z2 > MΛ.

e) If cosΛ
2 = − C

12B , C < 4A (cosΛ
2 > C

12B , C < 4A), then operator H̃2

has only one BS ϕ with the energy value z > MΛ.

f) If cosΛ
2 < − C

12B (cosΛ
2 > C

12B ), then the operator H̃2 has two BSs
ϕi, i = 1, 2; with the corresponding energy values z1 < mΛ, z2 > MΛ.

6. Let P ∈ F6 and Λ ∈]0;π[ (Λ ∈]π; 2π[).
a) If cosΛ

2 < − C
12B (cosΛ

2 > C
12B ), then the operator H̃2 has two BSs

ϕ1, ϕ2 with the corresponding energy values z1 < mΛ, z2 > MΛ.

b) If cosΛ
2 ≥ − C

12B (cosΛ
2 ≤ C

12B ), then the operator H̃2 has only one
BS ϕ with the energy value z < mΛ.
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7. Let P ∈ F7 and Λ ∈]0;π[ (Λ ∈]π; 2π[).
Then the operator H̃2 has two BSs ϕ1, ϕ2 with the corresponding energy

values z1 < mΛ, z2 > MΛ.

8. Let P ∈ F8 and Λ 6= 0.

Then the operator H̃2 has two BSs ϕ1, ϕ2 with the corresponding energy
values z1 < mΛ, z2 > MΛ.

Theorem 5. Let Λ = 0.
1. a) If P ∈ F1, C > 12B then the operator H̃2 has two BSs ϕ1, ϕ2 with

the corresponding energy values z1 < mΛ, z2 > MΛ.

b) If P ∈ F1, C ≤ 12B then the operator H̃2 has only one BS ϕ with the
energy value z < mΛ.

2. a)If P ∈ F2, 4A < C < 12B, then the operator H̃2 has three BSs
ϕi, i = 1, 2, 3; with the corresponding energy values zj < mΛ, j = 1, 2; z3 >
MΛ.

b) If P ∈ F2, C ≤ 4A,C < 12B, or P ∈ F2, 4A < 12B < C, then the
operator H̃2 has two BSs ϕi, i = 1, 2; with the corresponding energy values
z1 < mΛ, z2 > MΛ.

c) If P ∈ F2, C = 12B, C > 4A, then the operator H̃2 has only one BS
ϕ with the energy value z < mΛ.

d) If P ∈ F2, C = 4A ≥ 12B, or P ∈ F2, 12B < 4A < C, then the
operator H̃2 has only one BS ϕ with the energy value z > MΛ.

e) If P ∈ F2, C = 12B < 4A, or P ∈ F2, 12B < 4A < C, then the
operator H̃2 has no BS.

3. a) If P ∈ F3, C < −12B,A ≥ 3B, then the operator H̃2 has two BSs
ϕi, i = 1, 2; with the corresponding energy values z1 < mΛ, z2 > MΛ.

b) If P ∈ F3, A < 3B, then the operator H̃2 has only one BS ϕ with the
energy value z > MΛ.

c) If P ∈ F3, C ≥ −12B, A ≥ 3B, then the operator H̃2 has only one BS
ϕ with the energy value z < mΛ.

4. a) If P ∈ F4, C > −12B, then the operator H̃2 has two BSs ϕi, i = 1, 2;
with the corresponding energy values zi < mΛ, i = 1, 2;

b) If P ∈ F4, C = −12B, then the operator H̃2 has no BS.
c) If P ∈ F4, C < −12B, then the operator H̃2 has only one BS ϕ with

the energy value z < mΛ.

5. a) If P ∈ F5,−12B < C < 4A,C > 2A−6B, then the operator H̃2 has
two BSs ϕi, i = 1, 2; with the corresponding energy values zi < mΛ, i = 1, 2;
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b) If P ∈ F5,−12B < C < 4A,C ≤ 2A − 6B, or P ∈ F5, C = −12B <
4A, then the operator H̃2 has no BS.

c) If P ∈ F5, C = −12B ≥ 4A, or P ∈ F5, C < −12B, then the operator
H̃2 has only one BS with the energy value z < mΛ.

6. a) If P ∈ F6, 4A ≤ C < −12B, then the operator H̃2 has two BSs
ϕi, i = 1, 2; with the corresponding energy values zi > MΛ, i = 1, 2.

b) If P ∈ F6, C = 4A > −12B, or P ∈ F6, C = −12B ≥ 4A, or
P ∈ F6, C < −12B, C < 4A, then the operator H̃2 has no BS.

c) If P ∈ F6, C = −12B < 4A, or P ∈ F6, C > −12B, C 6= 4A, then the
operator H̃2 has only one BS ϕ with the energy value z > MΛ.

7. If P ∈ F7 (P ∈ F8), then the operator H̃2 has only one BS ϕ with the
energy value z > MΛ(z < mΛ).

A sketch proof of Theorems 4-5 is given below. In the case under
consideration, the equation for the eigenvalues is an integral equation wi-
th a degenerate kernel. It is therefore equivalent to a system of linear
homogeneous algebraic equations. It is known that such a system has a
nontrivial solution if and only if its determinant is equal to zero. In this
case, the equation ∆ν

Λ(z) = 0 is therefore equivalent to the equation stating
that the determinant of the system is zero. Expressing all integrals in the
equation ∆ν

Λ(z) = 0 through the integral

J(z) =
∫

T

dt

hΛ(t)− z
,

we �nd that the equation ∆ν
Λ(z) = 0 is equivalent to the equation

J(z) = {−C(z − 16A) + 16A(4A− 12B − C)cos2 Λ
2
}× (7)

×{C(z − 16A)2 + 16A(12B + C)(z − 16A)cos2 Λ
2

+ 3072A2Bcos4 Λ
2
}−1.

Because 1
hΛ(t)−z is a continuous function for z /∈ GΛ and

[J(z)]
′
=

∫

T

dt

[hΛ(t)− z]2
> 0,

the function J(z) is an increasing function of z for z /∈ GΛ. Moreover, J(z) →
0 as z → −∞, J(z) → +∞ as z → mΛ−0, J(z) → −∞ as z → MΛ +0, and
J(z) → 0 as z → +∞. Analysis of Eq. (7) outside the set GΛ = [mΛ; MΛ]
leads to the proof of Theorems 4-5.
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The energy spectrum in the case where ν = 2 for the full quasi momenta
of the form Λ = (Λ1; Λ2) = (Λ0; Λ0) is described below. It is easy to see that
if the parameters J, J1, J2, J3 and Λ0 satisfy the conditions of Theorems 4-5,
the statements of the theorems are true. Only one additional BS Ψ appears,
whose energy value is z̃ < mΛ or z̃Λ > MΛ if C > 0 or C < 0. If C = 0, the
operator H̃2 has no additional BS.

The proof of this statement is based on the fact that if ν = 2 and Λ =
(Λ0; Λ0), then the function ∆ν

Λ(z) has the form

∆ν
Λ(z) = [1− 4C

∫

T 2

[cos(Λ0
2 − s1)− cos(Λ0

2 − s2)]2

hΛ(s)− z
ds]×Ψ(z), (8)

where

Ψ(z) = {1− 48B
∫

T 2

1 + cosΛ0 − cosΛ0
2 [cos(Λ0

2 − s1) + cos(Λ0
2 − s2)]

hΛ(s1; s2)− z
ds1ds2}× (9)

×{1− 8C

∫

T 2

cos(Λ0
2 − s1)[cos(Λ0

2 − s1) + cos(Λ0
2 − s2)− 2cosΛ0

2 ]
hΛ(s1; s2)− z

ds1ds2}−

−768BC

∫

T 2

cos(Λ0
2 − s1)− cosΛ0

2

hΛ(s1; s2)− z
ds1ds2×

×
∫

T 2

cos(Λ0
2 − s1)×{1 + cos Λ0−cos Λ0

2 [cos(Λ0
2 − s1) + cos(Λ0

2 − s2)]}
hΛ(s1; s2)− z

ds1ds2.

The equation ∆ν
Λ(z) = 0 is therefore equivalent to the equation

1− 4C

∫

T 2

[cos(Λ0
2 − s1)− cos(Λ0

2 − s2)]2

hΛ(s1; s2)− z
ds1ds2 = 0 (10)

and

ψλ(z) = 0. (11)

It is easy to see Eq.(10) has a unique solution z̃ < mΛ if C > 0; if
C < 0, this solution satis�es the condition z̃ > MΛ. If C = 0, Eq. (10) has
no solution. Expressing the integrals in Eq. (11) through the integral

J(z) =
∫

T 2

ds1ds2

hΛ(s1; s2)− z
,
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we obtain an equation of the form

ηΛ(z)J(z) = ξΛ(z),

where

ηΛ(z) = C(z − 32A)2 + 32A(C + 6B)cos2 Λ0

2
(z − 32A) + 6144A2Bcos4 Λ0

2

and
ξΛ(z) = −C(z − 32A) + 32A(3A− 6B − C)cos2 Λ0

2
.

In turn, for ηΛ(z) 6= 0, the latter equation is equivalent to the equation of
the form

J(z) =
ξΛ(z)
ηΛ(z)

. (12)

Analyzing Eq. (12) outside the set GΛ and taking into account that the
function J(z) is monotonic for z /∈ [mΛ; MΛ], we obtain statements similar
to the statements in Theorems 4-5.

For all other quasi momenta Λ = (Λ1; Λ2), Λ1 6= Λ2, these exists sets
Gj , j = 0, 5, of the parameters J, J1, J2, J3 and Λ such that in every set Gj

the operator H̃2 has exactly j BSs (taking the energy degeneration order
into account) with the corresponding energy values zk /∈ GΛ, k = 1, 5.

Indeed, in this case and for ν = 2, the function ∆ν
Λ(z) has the form

∆ν
Λ(z) = detD, where

D =




d1,1 d1,2 d1,3

d2,1 d2,2 d2,3

d3,1 d3,2 d3,3


 ,

here

d1,1 = 1− 24B
∫

T 2

2− 2
∑2

i=1 cosΛi
2 cos(Λi

2 − si) +
∑2

i=1 cosΛi

hΛ(s)− z
ds1ds2,

d1,k+1 = −4C

∫

T 2

cos(Λk
2 − sk)− cosΛk

2

hΛ(s)− z
ds1ds2, k = 1, 2;

dk+1,1 = −24B×
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×
∫

T 2

cos(Λk
2 − sk)[2− 2

∑2
i=1 cosΛi

2 cos(Λi
2 − si) +

∑2
i=1 cosΛi

hΛ(s)− z
ds1ds2,

k = 1, 2;

dk+1,k+1 = 1− 4C

∫

T 2

cos2(Λk
2 − sk)− cosΛk

2 cos(Λk
2 − sk)

hΛ(s)− z
ds1ds2, k = 1, 2;

d2,3 = −4C

∫

T 2

cos(Λ1
2 − s1)cos(Λ2

2 − s2)− cosΛ2
2 cos(Λ1

2 − s1)
hΛ(s)− z

ds1ds2,

d3,2 = −4C

∫

T 2

cos(Λ1
2 − s1)cos(Λ2

2 − s2)− cosΛ1
2 cos(Λ2

2 − s2)
hΛ(s)− z

ds1ds2,

Λ ∈ T 2, s ∈ T 2.

Expressing all integrals in the equation ∆ν
Λ(z) = 0 through J(z) and

rearranging algebraically, we reduce the latter equation to the form

ΘΛ(z)J(z) = χΛ(z), (13)

where ΘΛ(z) is the �fth-order polynomial in z and χΛ(z) is a lower-order
polynomial in z. Analyzing Eq. (13) outside the set GΛ and taking into
account that the function J(z) with z /∈ [mΛ; MΛ] is monotonic, we can
easily verify that the equation has no more that �ve solutions outside the
set GΛ.

We now consider the case of ν = 3. Let the full quasi momentum have
the form Λ = (Λ1, Λ2, Λ3) = (Λ0, Λ0,Λ0). If the parameters Λ0, J, J1, and
J2 satisfy the conditions in Theorems 4-5, then statements similar to those
in the theorems are true. Only one additional BS η appears, whose energy
value is z̃. This energy level is twice degenerate and z̃ < mΛ or z̃ > MΛ

if C > 0 or C < 0. This additional BS vanishes when C = 0 because it is
incorporated into the continuous spectrum.

To prove this, we note that in this case, the function ∆ν
Λ(z) has the form

∆ν
Λ(z)=[1−4C

∫

T 3

[cos(Λ0
2 − s1)− cos(Λ0

2 − s2)]2

hΛ(s)− z
ds1ds2ds3]2ψ̃Λ(z), s ∈ T 3,
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where

ψ̃λ(z) = [1−24B

∫

T 3

[3 + 3cosΛ0 − 2cosΛ0
2 (

∑3
i=1 cos(Λ0

2 − si))]
hΛ(s)− z

ds1ds2ds3]×

×{1− 4C

∫

T 3

cos(Λ0
2 − s1)[

∑3
i=1 cos(Λ0

2 − si)− 3cosΛ0
2 ]

hΛ(s)− z
ds1ds2ds3}−

−288BC×

×
∫

T 3

cos(Λ0
2 − s1)[3 + 3cosΛ0 − 2cosΛ0

2

∑3
i=1 cos(Λ0

2 − si)]
hΛ(s)− z

ds1ds2ds3×

×
∫

T 3

cos(Λ0
2 − s1)− cosΛ0

2

hΛ(s)− z
ds1ds2ds3.

Therefore the equation ∆ν
Λ(z) = 0 is equivalent to the equations

[1− 4C

∫

T 3

[cos(Λ0
2 − s1)− cos(Λ0

2 − s2)]2ds1ds2ds3

hΛ(s)− z
]2 = 0 (14)

and

ψ̃Λ(z) = 0. (15)

It is easy to see that Eq. (14) has a unique double solution z
′ if C 6= 0

and z
′
< mΛ or z

′
> MΛ if C > 0 or C < 0. Expressing all integrals in Eq.

(15) through J(z) =
∫
T 3

ds1ds2ds3
hΛ(s)−z , we obtain the equation

η̃Λ(z)J(z) = Θ̃Λ(z), (16)

where

˜ηΛ(z) = C(z − 48A)2 + 48A(C + 6B)cos2 Λ0

2
(z − 48A) + 13824A2Bcos

Λ0

2

and
˜ΘΛ(z) = −C(z − 48A) + 48A(3A− C − 6B)cos2 Λ0

2
.

If ˜ηΛ(z) 6= 0, Eq.(16) is, in turn, equivalent to the equation

J(z) =
˜ΘΛ(z)
˜ηΛ(z)

. (17)
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Analyzing Eq. (17) outside the set GΛ and taking into account that the
function J(z) for z /∈ GΛ is monotonic, we prove the statements made above.

If Λ 6= (Λ0, Λ0, Λ0), the system has at most seven BSs (taking the energy
degeneration order into account), and there exist sets Gk, k = 0, 7, of the
parameters Λ, J, J1, J2 and J3 such that in every set Gk, the system has
exactly k BSs. The energy values of these BSs lie outside the set GΛ. When
passing from one of these sets to another, either some additional BSs of the
operator H̃2 appear or some existing BSs vanish. In this case, function ∆ν

Λ(z)
has the form ∆ν

Λ(z) = detD, where

D =




d1,1 d1,2 d1,3 d1,4

d2,1 d2,2 d2,3 d2,4

d3,1 d3,2 d3,3 d3,4

d4,1 d4,2 d4,3 d4,4


 .

Here
d1,1 = 1− 24B

∫

T 3

gΛ(s)
hΛ(s)− z

ds1ds2ds3,

d1,k+1 = −4C

∫

T 3

fΛk
(sk)

hΛ(s)− z
ds1ds2ds3, k = 1, 2, 3;

dk+1,1 = −24B
∫

T 3

ϕΛk
(sk)gΛ(s)

hΛ(s)− z
ds1ds2ds3, k = 1, 2, 3;

dk+1,k+1 = 1− 4C

∫

T 3

fΛk
(sk)ϕΛk

(sk)
hΛ(s)− z

ds1ds2ds3, k = 1, 2, 3;

d2,2+k = −4C

∫

T 3

ϕΛ1(s1)fΛk
(sk)

hΛ(s)− z
ds1ds2ds3, k = 1, 2;

dk+2,2 = −4C

∫

T 3

ϕΛk
(sk)fΛ1(s1)

hΛ(s)− z
ds1ds2ds3, k = 1, 2;

d3,4 = −4C

∫

T 3

ϕΛ2(s2)fΛ3(s3)
hΛ(s)− z

ds1ds2ds3,
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d4,3 = −4C

∫

T 3

ϕΛ3(s3)fΛ2(s2)
hΛ(s)− z

ds1ds2ds3.

In these formulas,

gΛ(s) =
3∑

i=1

[1 + cosΛi − 2cos
Λi

2
cos(

Λi

2
− si)],

fΛk
(sk) = cos(

Λk

2
− sk)− cos

Λk

2
, ϕΛk

(sk) = cos(
Λk

2
− sk), k = 1, 2, 3.

Expressing all integrals in the equation ∆ν
Λ(z) = 0 through J(z) and

rearranging algebraically, we reduce this equation to the form J(z) = NΛ(z)
MΛ(z) ,

where MΛ(z) is a seventh-order polynomial in z, and NΛ(z) is a lower-order
polynomial in z. Therefore, this equation has no more than seven solutions
outside the set GΛ.

For an arbitrary ν > 3 and Λ = (Λ1; Λ2; ...; Λν) = (Λ0; Λ0; ...; Λ0) the
change of energy operator spectrum is similar to that observed in the case of
ν = 1. In this case the operator H̃2 with C 6= 0 has only one additional BS.
The energy z of this additional BS is degenerated ν − 1 times. For all other
values of the full quasi momentum Λ of the system, the operator H̃2 has no
more that 2ν+1 BSs (taking the energy degeneracy order into account) with
energy values lying outside the set GΛ.

The proof of these statements is based on �nding zeros of the function
∆ν

Λ(z). Expressing all integrals in ∆ν
Λ(z) through J(z), we can bring the

equation ∆ν
Λ(z) = 0 to the form

J(z) =
CΛ(z)
DΛ(z)

, (18)

where DΛ(z) is a (2ν + 1) th-order polynomial in z and CΛ(z) is also a
polynomial in z whose order (with respect to DΛ(z)) is lower. Analysis
of Eq. (18) outside the set GΛ leads to the proof of the statements made
above.
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ÄÎÑËIÄÆÅÍÍß ÑÏÅÊÒÐÀ I ÇÂ'ßÇÀÍÈÕ ÑÒÀÍIÂ
ÎÏÅÐÀÒÎÐÀ ÅÍÅÐÃI� ÄÂÎÌÀÃÍÎÍÍÈÕ ÑÈÑÒÅÌ Ó

ν−ÂÈÌIÐÍÎÌÓ ÍÅÃÅÉÇÅÍÁÅÐÃIÂÑÜÊÎÌÓ
ÔÅÐÐÎÌÀÃÍÅÒÈÊÓ IÇ ÇÍÀ×ÅÍÍßÌ ÑÏIÍÓ S = 2 ÒÀ IÇ

ÂÇÀ�ÌÎÄI�Þ ÍÀÉÁËÈÆ×ÈÕ ÑÓÑIÄIÂ

Ñàäóëëà ÒÀØÏÓËÀÒÎÂ

Iíñòèòóò ÿäåðíî¨ ôiçèêè, Óçáåöüêà Àêàäåìiÿ Íàóê, Òàøêåíò,
Óçáåêèñòàí

Ðîçãëÿäà¹òüñÿ äâîìàãíîííà ñèñòåìà ó ν−âèìiðíîìó íåãåéçåíáåðãiâ-
ñüêîìó ôåððîìàãíåòèêó iç çíà÷åííÿì ñïiíó s = 2 òà iç âçà¹ìîäi¹þ íàé-
áëèæ÷èõ ñóñiäiâ. Äîñëiäæó¹òüñÿ ñïåêòð i çâ'ÿçàíèé ñòàí (ÇÑ) äëÿ âñiõ
çíà÷åíü ïîâíîãî êâàçiiìïóëüñà Λ, äëÿ äîâiëüíèõ çíà÷åíü ðîçìiðíîñòi  ðà-
òêè ν i äëÿ âñiõ çíà÷åíü ïàðàìåòðiâ ãàìiëüòîíiàíà. Ìè ïîêàçó¹ìî, ùî:

(i) äëÿ äîâiëüíîãî ν ≥ 2 i äëÿ ïîâíîãî êâàçiiìïóëüñà ó âèãëÿäi
Λ = (Λ1; Λ2; ...; Λν) = (Λ0; Λ0; ...; Λ0) çìiíà åíåðãåòè÷íîãî ñïåêòðà ñè-
ñòåìè äîñëiäæó¹òüñÿ àíàëîãi÷íî ÿê ó âèïàäêó ν = 1. Â öüîìó âèïàäêó
îïåðàòîð H̃2 ìà¹ ¹äèíèé äîäàòêîâèé ÇÑ;

(ii) åíåðãi¨ öüîãî äîäàòêîâîãî ÇÑ z ¹ ν − 1−êðàòíî âèðîäæåíèìè;
(iii) ÿêùî Λ 6= (Λ0; Λ0; ...; Λ0), òî â ν−âèìiðíié  ðàòöi ñèñòåìà ìà¹ íå

áiëüøå, íiæ 2ν + 1 ÇÑ.




