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One of the known generalizations of the chaotic representation property (CRP) for a Lévy process
is based on orthogonalization of continuous monomials in the space (L?) of square integrable random
variables. Using this generalization of the CRP, we introduce riggings of (L?) by spaces of test and
(regular and nonregular) generalized functions, construct extended Skorohod stochastic integrals
with respect to a Lévy process as linear continuous operators on the mentioned spaces of generalized
functions, and establish some properties of these integrals.

M.O. Kauanoscokuii. Pozwupeni cmoxacmunmi ihmezpany 36 npoyecom Jleei na npocmopar ysa-
2aavnenus gynryit // Mar. sicauk HTIHI. — 2013. — T.10. — C. 169-188.

Opne 3 BiIOMEX y3arajibHEHb BJACTHBOCTI xaoTudHoro poskiany (BXP) ana mpouecy Jlesi 6a-
3y€ThCA Ha OPTOTOHAI3AIIl HemepepBHUX MOHOMiB y mpoctopi (L?) KBajpaTwdHO iHTErpOBHUX BH-
Ia/IKOBUX BeJMYUH. Bukopucropyioun ne ysaraabenns BXP, mu sogumo ocnamenus (L?) mpo-
CTOpaMu OCHOBHUX Ta (peryjispHuX i HeperyisapHux) ysarajbHenux (yHkiiii, OymyemMo po3rupeni
croxactu4Hi inTerpaan Ckopoxoa 3a mporecom Jlesi sk JiniitHi HemepepBHi omepaTopu Ha 3raJaHUX
MIPOCTOpax y3arajabHeHUX (PYHKITH Ta BCTAHOBIIOEMO €Ki BJIACTHBOCTI IIAX iHTErPAaJIiB.

Introduction

Let L = (Ly)tejo,+00) be @ Lévy process, i.e., a random process on [0, +00) with stationary
independent increments and such that Ly = 0 (see, e.g., |5, 25, 26] for detailed information
on Lévy processes). In particular cases, when L is a Wiener or Poisson process, any square
integrable random variable can be decomposed into a series of repeated stochastic integrals
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of nonrandom functions with respect to L. This property of L is called the chaotic represen-
tation property (CRP), see, e.g., [22] for more information. The CRP plays a very important
role in the stochastic analysis (in particular, it can be used to construct extended stochastic
integrals, see, e.g., [14, 31, 13|), but, unfortunately, for a general Lévy process this property
does not hold (e.g., [29]).

There are different generalizations of the CRP for Lévy processes. In particular, under
[to6’s approach [12] one decomposes a Lévy process L into the sum of a Gaussian process
and a stochastic integral with respect to a Poisson random measure, and then uses the CRP
for both terms in order to obtain a generalized CRP for L. Nualart-Schoutens’ approach
[23] (see also [27]) consists in decomposition of a square integrable random variable into
a series of repeated stochastic integrals of nonrandom functions with respect to the so-
called orthogonalized centered power jump processes; these processes are constructed using
a cadldg version of L (i.e., a random process which is stochastically equivalent to L and
has right continuous trajectories with finite left limits). Lytvynov’s approach [21] is based
on orthogonalization of continuous monomials in the space of square integrable random
variables.

The interconnection between the above-mentioned generalizations of the CRP is described
in, e.g., [21, 2, 28, 16]; one more example of a generalized CRP is given in [8, 7|.

Let from now on L be a Lévy process without Gaussian part and drift (it is comparatively
easy to study such processes from technical point of view). In order to construct an extended
stochastic integral with respect to L, one can take any generalization of the CRP mentioned
above. Namely, in the case of “It6’s CRP” the construction of this integral is analogous to
the corresponding construction in the Poisson case, cf., e.g., [8] and [13]. In the case of
“Nualart—Schoutens’ CRP” one can use term by term integration of a Nualart—Schoutens
decomposition of an integrand with respect to a random measure corresponding to L ([16]).
In the case of “Lytvynov’s CRP” one can construct the extended stochastic integral using
a “special symmetrization” for kernels from the Lytvynov decomposition of an integrand
[16] (see also [15, 18]), or as the operator adjoint to the Hida stochastic derivative. The
reader can find more details on extended stochastic integrals with respect to Lévy processes
in, e.g., [3, 20, 8, 6, 10, 24, 7, 16]; for a general background on stochastic integration on
infinite-dimensional spaces see, e.g., |1, 9].

In the paper [16] the extended Skorohod stochastic integral with respect to a Lévy process,
and the Hida stochastic derivative, in terms of the Lytvynov’s generalization of the CRP,
on the space of square integrable random variables were constructed; some properties of
these operators were established; and it was shown that the extended stochastic integrals
constructed with the use of three above-mentioned generalizations of the CRP coincide. But
when we consider the stochastic integral as an operator on the space of square integrable
random variables, then this operator is unbounded and, moreover, its domain depends on the
interval of integration. This drawback essentially restricts an area of possible applications.
Therefore, an important problem is to modify the definition of the extended stochastic
integral in order to get a linear bounded (i.e., continuous) operator. A possible solution
of this problem—to define the stochastic integrals as linear continuous operators acting on
spaces of generalized functions (in the simplest case one can define the integral as an operator
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acting from the space of square integrable random variables to a space of regular generalized
functions, see [17]). So, the aims of the present paper are to introduce riggings of the space of
square integrable random variables by spaces of test and (regular and nonregular) generalized
functions; to define the extended Skorohod stochastic integrals with respect to a Lévy process
in terms of Lytvynov’s generalization of the CRP as linear continuous operators on spaces
of these riggings; and to describe some properties of these operators.

The paper is organized in the following manner. In the first section we introduce a Lévy
process L and construct a convenient for our considerations probability triplet connected
with L; then, following [16], we describe in detail Lytvynov’s generalization of the CRP, the
extended stochastic integral with respect to L, and the Hida stochastic derivative, on the
space of square integrable random variables. In the second section we introduce riggings of
the space of square integrable random variables by spaces of test and (regular and nonregular)
generalized functions, and construct natural orthogonal bases in these spaces (we need these
bases in order to define stochastic integrals). In the third section we introduce and study
extended stochastic integrals on spaces of generalized functions.

1. Preliminaries

1.1. Lévy processes

Denote R, := [0,400). In this paper we deal with a real-valued locally square integrable
Lévy process L = (L;)ier, (a random process on Ry with stationary independent incre-
ments and such that Ly = 0) without Gaussian part and drift. By the Lévy—Khintchine
formula such a process can be represented in the form (e.g., [8]) L; = fot Ja eN (du, dz),
where N(du, dz,-) is the compensated Poisson random measure of L, and the characteristic
function of L is

B[] = exp [t /R (¢ — 1~ iua)(da)|, (1)

where v is the Lévy measure of L, which is a measure on (R, B(RR)); here and below B denotes
the Borel o-algebra and E denotes the expectation. We assume that v is a Radon measure
whose support contains an infinite number of points, v({0}) = 0, there exists € > 0 such that

/:r%slmly(d:c) < 00,
R

and
/R 2?v(dz) = 1. (2)

Let us define a measure of the white noise of L. Let D denote the set of all real-valued
infinite-differentiable functions on R, with compact supports. As is well known, D can be
endowed by the projective limit topology generated by a family of Sobolev spaces (e.g., [4];
see also Subsection 2.2). Let D’ be the set of linear continuous functionals on D. For w € D’
and ¢ € D denote w(p) by (w, ¥); note that one can understand (-,-) as the dual pairing
generated by the scalar product in the space L*(R,) of (classes of) square integrable with
respect to the Lebesgue measure real-valued functions on R;. The notation (-,-) will be
preserved for dual pairings in tensor powers of spaces.
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Definition 1.1. A probability measure p on (D',C(D’)), where C denotes the cylindrical
o-algebra, with the Fourier transform

") 1 (dw) = exp e Wr _ 1 —jo(u)z)dur(dz)|, €D, 3
s R4 xR v 7
/ + X

is called the Lévy white noise measure.

The existence of p follows from the Bochner—Minlos theorem (e.g., [11]). Below we will
assume that the o-algebra C(D') is complete with respect to p, i.e., C(D') contains all subsets
of all measurable sets O such that p(O) = 0.

Denote (L?) := L*(D',C(D’), i) the space of (classes of) real-valued functions on D’ that
are square integrable with respect to u; let also H := L*(R,). Substituting in (3) ¢ = t4,
t € R, ¢ € D, and using the Taylor decomposition in ¢ and (2), one can show that

(w, ) u(dw) = | ((w))’du (4)
A /.

(this statement follows also from the results of [21] and [8]). Let f € H and D 3 ¢ — f in
H as k — oo. It follows from (4) that {(o, ¢x) }r>1 is a Cauchy sequence in (L?), therefore
one can define (o, f) := limg_,o. (0, ) € (L?) (the limit in the topology of (L?)). Tt is easy
to show (by the method of “mixed sequences”) that (o, f) does not depend on the choice of
an approximating sequence for f and therefore is well defined in (L?).

Let us consider (o,14) € (L?), t € Ry (here and below 14 denotes the indicator of a
set A). It follows from (1) and (3) that ((o, 1[07,5)))@R+
on the probability space (D',C(D’), u), i.e., one can write Ly = (o, 1j4) € (L?).

can be identified with a Lévy process

1.2. Lytvynov’s generalization of the CRP
Denote by & a symmetric tensor product. Let P = P(D’) be the set of continuous polyno-
mials on D', i.e., elements of P have the form
Ny
flw)= " "), weD, NyeZ,, f™ e, fON) Lo,

n=0

here N; is called the power of a polynomial f; (W®°, f@) := fO ¢ D0 .= R. Since the
Laplace transform of the Lévy white noise measure p is holomorphic at zero (this follows
from (3) and properties of the measure v, see also [21]), P is a dense set in (L?) ([30]).
Denote by P, the set of continuous polynomials of power < n, by P, the closure of P, in
(L?). Let for n € N P,, := P,, © P,,_; (the orthogonal complement in (L?)), Py := Py. It is
clear that

(12) = éPn.

Let £ ¢ DE" n € Z.. Denote by : (o®" f(™): the orthogonal projection of a monomial
(o®" ™) onto P,,. Let us define the scalar products (-, )¢, on D®", n € Z,, by setting for
£ gn) g pin

1

<f(n)’ g(n)>ext = H : (w®”, f(n)> . <w®n’ g(n)> :M(dw>7
. ’D/
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and let | - |4 be the corresponding norms, i.e., | f™ | = v/ (f™, f™) ;. Denote by Hemt,
n € Z,, the closures of D®" with respect to the norms | - |4. For f™m e H™) define a Wick

ext

monomial : (0%, f™): € (12} — lim, . : (0®", f™):, where D% 5 £ — f™ as k — oo
in ’Hm (well-posedness of this definition can be proved by the method of “mixed sequences”).
Since, as is easy to see, for each n € Z, the set {:(o®" f(M): f() ¢ D"} is dense in P,

the following statement is fulfilled.

Theorem 1.2. Let F € (L?). Then there exists a unique sequence of kernels f™ ¢ H
n € Z, such that

emt;

F =2 (o f (5)

and
(o)

Pl = | IF@)Pulds) = BIFE = 3 all L, )

n=0

Vice versa, any series (5) with finite norm (6) is an element of (L?).

Note that for F,G € (L?) the scalar product has the form
(F,G)12) = / F(w)G(w)p(dw) = Zn' M)y o,

where (M ¢ ¢ 7—[( ot are the kernels from decompositions (5) for F' and G respectively. In
particular, for f™ ¢ ’H and g™ € /Hm ,n,m e Ly,

(o 1) 50 ™)) gy = [ 2 ) ) ()
= E[: <O®n7 f(n)> . <O®m’ g(m)> :] — 5n,mn!<f(n), g(n)>ezt-

Remark 1.3. It was shown in [21] that in the space (L?) : (020, f(0): = (c®0 f(0)) = () and
o, fMY: = (o, fM), But for n > 1 :(c®", f™): is not a continuous polynomial, generally
speaking. Moreover, in this case the elements : (o®" f (”)>: are continuous polynomials (and
even generalized Appell polynomials, or Schefer polynomials in another terminology) if and

only if our Lévy process L belongs to the so-called Meizner class of random processes, see
[21] for detalils.

In order to work with spaces H™ it s necessary to know the explicit formulas for the

exta
scalar products (-, ). Let us write out these formulas. Denote by || - ||, the norm in the
space L?(R,v) of (classes of) real-valued functions on R that are square integrable with

respect to v. Let
po(x) = 2" + an,n_lx”_l +- 4 apir, a,; €R, je{l,...,n—1}, neN, (7)

be polynomials orthogonal in L%(R,v), i.e., for natural numbers n,m such that n # m,
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Proposition 1.4. ([21]) For f™, ¢ € D" n € N, we have

<f(n) g(n)>ext = Z n! <le1||u)251 o <||plk||y>25k;
| silospt L ! AN

kyjys €N j=1,..k, 13>lg>>ly, k
lysy+-- +lksk n

(n)
X FU Ury ey Uay e Uy e ey Uy e ey Uy otsges - -+ s Uy orsy ) (8)
R31+.H+Sk N ~- v N -~ ~ ~
l1 I lg
(n)
Xg (ul,...,Ulw..,usN...,usy...7U5r%_+skw..,1@1+“44k)dU1"'dUSr%”+SW
W Vv Vv

I A Iy

In particular, forn =1 (f®,gM) . = (fO, M) if n = 2 then (f@, ¢@) 0 = (f@, g@) +
Hp;ll% fR+ @ (u,1)g? (u, u)du, etc.

As is easy to see, formulas (8) hold true for f™, g™ e H™).
It follows from (8) that H'L, = H = L2(R,): by (7) pi(z) = = and therefore by ( )
Ip1]l, = 1; and for n € N\{1} one can identify H®" with the proper subspace of )
that consists of "vanishing on diagonals" elements (i.e., f™(uy,...,u,) = 0 if there exist
k,j € {1,...,n} such that k& # j but uy = u;). In this sense the space 1 is an estension

of HEn (thls explains why we use the subscript ext in the designations ’Hext, () )ext and
| ’ |e:tt)-

1.3. An extended stochastic integral on the space of square integrable random
variables

Let F' € (L?) ® H. It follows from representation (5) for elements of (L?) that F can be
presented in the form

= "o fMy [ e HO) @ H. 9)
n=0
Let us describe the construction of an extended stochastic integral that is based on this
decomposition and is correlated with the structure of the spaces H™ . Note that in the case
when L is a process of Meixner type (e.g., [21]), such an integral is constructed and studied
in [15].
Let £ € H™ @ 1, n € N. We select a representative (a function) f™ € £ such that

ea:t

F(uy, .. uy) = 0if for some k € {1,...,n}, u=u. (10)

Accept by default that ti,t5 € [0, +0o0], t1 < ty. Let f(") be the symmetrization of

(n+1)
ext

f'.(")l[tl,tz)() by n + 1 variables. Define f[t 1) € 7—[67;?1 as the equivalence class in H
(n)

generated by f
from [16].

. The next statement is a trivial modification of the corresponding result
Lemma 1.5. For each f.( € ’Hewt ® H, n € N, the element ft 1) € /HS;ZL is well defined

(in particular, f b1 12) does not depend on the choice of a representative f. € f.(n) satisfying
(10)) and

’f[gf?,)tz)|emt < |f.(”)1[t1,t2)(-)|7{$1®% < |f'(n)|7i(£l®ﬂ' (11)
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Definition 1. 6 For F € (L*)®H, ty,tz € [0, +00], t1 < ta, we define an extended stochastic
integral j; w)dL, € (L?) by setting

to 0
n 1 TL .
| P, =Y s i, ) (12)
tl :0
where ft tg) f(o)l[tl 1) () EH = 7—[23, ]/”[T 1) € ’Heztﬂ n € N, are constructed by the

kernels f( € H™) @ H from decomposition (9) for F, if the series in the right hand side of
(12) converges in (L?).

The domain of this integral, i.e., of the operator

/tz o(u)dL, : (L*) ® H — (L?), (13)

t1

consists of F' € (L*) ® H such that (see (6))

H /t ;2 F(u)dL

Theorem 1.7. ([16]) Let F € (L*) ® H be integrable by It6 (i.e., F' is adapted with respect
to the flow of o-algebras generated by the Lévy process L). Then for any ti,ty € [0, +00],

Z(n—l— DUFE, 20 < oo, (14)

t1 < to, F is integrable in the extended sense and

/ ” F(u)dL, = / ’ F(u)dL,,

t1 t1
where ft w)dL, is the Tto stochastic integral.

1.4. A Hida stochastic derivative and its interconnection with the extended
stochastic integral

In order to define a stochastic derivative on (L?) we need some preparation. Let g™ € ”Hext,
neN, ¢ e g™ bea representatlve of g™ . We consider g™ (), i.e. separate one argument

of g™, and define ¢g™(-) € ngt ® H as the equivalence class in H" ) @ H generated by
5(n) (.
9" ().

Lemma 1.8. ([16]) For each ¢™ ¢ #"
defined (in particular, g™ (-) does not depend on the choice of a representative ¢ € ¢g™)
and

ext

n € N, the element g™ (-) € H Y @ H is well

e:ct; ext

‘g(n)<)’HEZ:1)®H < ‘g(n)‘ext- (15)

Remark 1.9. Note that, in spite of estimate (15), the space H"
(n—1)

ext

n € N\{1}, can not be
® H because different elements of ’HSZ can coincide as

exta
considered as a subspace of H

elements of ”Hm ® H.



176 N. A. KACHANOVSKY

Definition 1.10. Let t1,t, € [0,+00], t; < to. For G € (L?) we define a Hida stochastic
derivative 1y, 4,)(-)0.G € (L?) @ H by setting

1[t17t2)(')aG = Z(n +1): <O®nv g(n+1)(')1[t1,t2)<’)> " (16)

where gD € %" p € 7. . are the kernels from decomposition (5) for G, considered as

elements of H") ® H, if the series in the right hand side of (16) converges in (L2) @ H.

The domain of this derivative, i.e., of the operator

Lty 12)(1)0. = (L?) = (L*) @ H, (17)
consists of G € (L?) such that
e12) (VO Er2y = D (n+ Dl(n + 1)|g(n+1)(')1[t1,t2)(')|3{$®ﬂ < oo
n=0

Theorem 1.11. ([16]|) For arbitrary t;,t2 € [0,400], t1 < t2, extended stochastic integral
(13) and Hida stochastic derivative (17) are mutually adjoint:

to

(18)

/t2 o(U)C/i\Lu = (1[151,152)(-)8_)*07 1[t1,t2)(‘)a — (/ *

t1 t1

oc/l\L)
In particular, integral (13) and derivative (17) are closed operators.

Note that equalities (18) can be used as alternative definitions of the extended stochastic
integral and the Hida stochastic derivative.

2. Spaces of test and generalized functions

2.1. A regular rigging of (L?)
Denote Py = {f = Zgio:<o®”,f(")>:,f(") € D@)”,Nf € Zi} C (L*). Accept by default
that ¢ € Z,, S € [0, 1], and define scalar products (-,-), 3 on Py by setting for

Ny Ng
f:Z:<o®”,f(")>:, g:Z:<o®”,g(")>: € Pw (19)
n=0 n=0
min(Ny,Ng)
(f@as= Y, ()20, g™),,.
n=0

Let || - ||, be the corresponding norms, i.e., ||f|l,s6 = /(f, [)q5-

Definition 2.1. We define parametrized Kondratiev-type spaces of test functions (Lz)g as
closures of Py with respect to the norms || - [|o5; and set (L*)? := pr lim c; (L?)J (the
projective limit of spaces).
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(n)

ext

As is easy to see, [ € (L2)qﬁ if and only if f can be presented in form (5) with f™ € H

and
o

155 = 112y = D () P2 2, < oo (20)
n=0
and for f,g € (L?)?
() 12y = S () o2 () gy,
n=0

where (" ¢ ¢ Hg% are the kernels from decompositions (5) for f and g correspondingly.
Further, f € (L?)? if and only if f can be presented in form (5) and norm (20) is finite for
each ¢ € Z,.

Proposition 2.2. For any q € Z, and (3 € [0, 1] the space (LQ)g is densely and continuously
embedded into (L?).

Proof. Let q € Zy, € [0,1] and f € (L?)J. It is obvious that || f|lqs > || fl/(z2). Further, if
| £1l4.5 # O then there exists at least one non-zero f™ € /Hext from decomposition (5) for f,
therefore || f||(z2) # 0. Hence (L?)? is continuously embedded into (L?). The density of this
embedding follows from the fact that Py is a dense set in (L?). O

In view of this proposition, one can consider a chain
2\— 2\—P8 2 2 2
(L) 77 D (L*)Zg D (L*) D (L] D (L), (21)

where (LQ):g, (L*)7% =ind limqem(Lz)iqﬁ (the inductive limit of spaces) are the spaces dual
of (L?)2, (L*)? correspondingly with respect to (L?).

Definition 2.3. The spaces (L2):§, (L*)F are called parametrized Kondratiev-type spaces
of regular generalized functions.

The next statement follows from the definition of the spaces (L2):q”8 and the general
duality theory.

Proposition 2.4. 1) Any regular generalized function F € (L?)~? can be presented as a

—q
formal series

F =" Fmy. Fm e 7)) (22)
m=0

that converges in (LQ):;f, ie.,

o

[ e L e > (mh) P FOUE, < oo (23)

m=0

and, vice versa, any formal series (22) with finite norm (23) is a regular generalized function
from (L?)_7;
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2) for F,G € (LQ)iqﬁ the scalar product has the form
(F, Z (m)t=Fo-am( (m)7g(m)>m’
m=0

where F(™) G(m) ¢ ’HS;;) are the kernels from decompositions (22) for F' and G respectively;
3) the dual pairing between I € (LQ):g and f € (L*)5 that is generated by the scalar
product in (L?), has a form

- Z nl(F™ gy
n=0

where FM_ ™ ¢ 4" are the kernels from decompositions (22) and (5) for F and f
respectively.

Corollary 2.5. I € (L*)7% if and only if F can be presented in form (22) and norm (23) is
finite for some q € 7 .

Remark 2.6. We use the term "regular generalized functions” for elements of (L2):§ and
(L?)~# because the kernels from decompositions (22) of these elements and the kernels from
decompositions (5) of test functions belong to the same spaces.

2.2. A nonregular rigging of (L?)

Denote by T' the set of indexes 7 = (71, 73), where 71 € N; 75 is an infinite differentiable
function on R, such that for all u € Ry 7o(u) > 1. Let H, be the Sobolev space on R, of
order 71 weighted by the function 75, i.e., the scalar product in H, is given by the formula

(o, = [ (Pl + > @ P@u W) ru)d
R+ k=1

here ) (-) and ¢*)(.) are derivatives of order k of functions ¢ and ¢ Correspondingly.
Denote the norms in #H, and its tensor powers by |- |, i.e., for ¢, 7—[?”, n € N,

|onlr = 1/<<;0n790n>H®n~ Note that D = pr lim_ . #H, and for each 7 € T" H, is densely
and continuously embedded into H = L*(R,) (cf. [4]), therefore one can consider the rig-
ging
Do>H_.DODOHDH, DD,

where H_,, 7 € T, are the spaces dual of H, with respect to H. Denote the norms in 7—[@:927
nGN,bY|'|_7—.

Accept by default that ¢ € Z,, 7 € T, and define scalar products (-,-),, on Py (see
Subsection 2.1) by setting for f, g € Py of form (19)

min(Ny,Ng)

(£ 9ra= Y (227 (f™,g"™) 5.

n=0

Let || - ||+, be the corresponding norms, i.e., || f|l+.; = /(s [)rq
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Definition 2.7. We define Kondratiev spaces of test functions (H,), as closures of Py, with
respect to the norms || - ||,4; and set (H,) := pr lim,cz, (H,)q, (D) := pr lim ez, cr(Hr)q-

As is easy to see, f € (H,), if and only if f can be presented in the form

F=3 (o fm) f) e Hin, (24)
n=0
with
1112 g = £ Ie,, = D (n)?2" [ F2 < oo; (25)
n=0
and for f,g € (H,),
(£, D, = D)2 (f,g"), e,
n=0

where f ¢ ¢ 7—[?” are the kernels from decompositions (24) for f and g correspondingly
(here for f ¢ H?" :(0®", fM): is the projection of a monomial (o®" f() onto P, see
Subsection 1.2). Further, f € (H,) (f € (D)) if and only if f can be presented in form (24)
and norm (25) is finite for each ¢ € Z, (for each ¢ € Z, and each 7 € T').

In order to construct an analog of chain (21) with Kondratiev spaces of test functions,
we need some preparation. By analogy with [15] one can easily show that the Lévy white
noise measure p is concentrated on H_z with some 7 € T', i.e., u(H_5) = 1. Removing from
T the indexes 7 such that p is not concentrated on H_,, we will assume, in what follows,
that for each 7 € T p(H_,;) = 1.

Lemma 2.8. There exists 7’/ 6 T such that for each n € N the space ’Hf?)," is densely and

continuously embedded into H" Moreover, for all f™ € Hf?i"

ext
|f 2, < nlet| f™)]2, (26)
where ¢ > 0 is some constant.

Proof. At first we will show that there exists 7/ € T such that for all f™ e DE" estimate
(26) is valid. By analogy with, e.g., [19] one can prove that, since the Laplace transform of
the Lévy white noise measure p is holomorphic at zero, there exist 7/ € T and € > 0 such
that K(7',¢) :== [, , e¥Il-+i(dw) < oo. Further, it follows from the Taylor decomposition
of the exponential function that for arbitrary w € H_» and n € Z,

65|t.u|_7_/

W = || < !

En

therefore

n n (n)? .
10" |—rr[I¢z2) :/’H w2 p(dw) < K(7',e). (27)

-7
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Let f( ¢ D" We have

Al = [ ) Pl < [ o 1) Pl

—T

(n)|2 ®n |2 (n!)? ’ (n) |2
S ‘f |T’ |w |7T’M(dw> S K(T 76)’.]['
H_

€2n

-7

whence estimate (26) for f(”z € D" follows.
In order to prove that HE" is embedded into Hext it remains to show that if a sequence

(fkn))k 0 C D" is a Cauchy one in ’H®” and simultaneously hm fk =0 1in ’Hext then
I}LIIOlO fk = 0 in 7-[,‘?," (see, e.g., [4]). In fact, if (fk )k 0
inequality |- [z, < |- [y (see (8)) hm f(n) 0 in HE". But D" C HE C HEm,

therefore lim f,gn) =01in 7—[65” Estimate (26) for a general f(™ ¢ ’H@m can be obtained by

is such a sequence, then by the

m is dense

the Correspondmg _passage to the limit. Finally, the embedding of 7—[®" into H"
because D" C 7—l®" and D" is a dense set in Hm; and the continuity of this embedding
follows from (26). O

Remark 2.9. It is not difficult to see that if for some 7 € T' H, is Continuously embedded
into H, then for each n € N H®” is densely and continuously embedded into H"
exists ¢(7) > 0 such that for all f( e H&n

|f( )|ext < n‘c( )n|f(n)’72'

In what follows, it will be convenient to assume that the indexes 7 such that H, is not

m, and there

continuously embedded into H,., are removed from T.

Proposition 2.10. For each 7 € T there exists qo = qo(7) € Zy such that for each q €
Ny :={q0,90 + 1, -+ } the space (H,), is densely and continuously embedded into (L?).

Proof. Let 7,77 € T, where 7’ is the parameter from Lemma 2.8. Since for any n € N
yon < (1) 0|, 5. with some ¢(7) > 0 (now H_,» C H_. due to our modification of the

set T'), it follows from estimate (27) that there exist £(7) > 0 and K € (0, 400) such that

o]

n!
e(r)"

Il 0™ |-+ llz2) < K. (28)

Let f € (H,),. Using decomposition (24), estimate (28), and (25), we obtain

£l zzy < DM, £l r2) <ZII o, f)|(12)
n=0

° |

n!
K|
E(T)n ’f |

<Y Mo |l £ <
n=0

n=0

o0

< inl22qn’f(n|2 ZL:WH iL<O@
A\ = (2a¢(T)2)n e (2a¢(7)2)n ’

n=0
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if ¢ € Ny, where gy = qo(7) is such that 2%¢(7)? > 1. Further, let ||f||z2y = 0. Then for
each n € Z, |f™ | = 0, where f € HO" C (") are the kernels from decomposition
(24) for f (see Lemma 2.8; by definition HE° = R), therefore [f(™|, = 0. But this means
that ||f]|., = 0, so, the continuous embedding of (H,), into (L?) is proved. Finally, this
embedding is dense because Py is a dense set in (H.), and in (L?). O

In view of this proposition for 7 € T and ¢ > qo(7) one can consider a chain
(D) D (H-r) D (H-r)—¢ D (L*) D (H+)q O (H-) D (D),

where (H_;) ¢, (H_-) = ind limgen, (H-r)—¢, (D) = ind lim,er(H_;) are the spaces dual
of (H.)y, (H.), (D) correspondingly with respect to (L?).

Definition 2.11. The spaces (H_.)_,, (H_), (D’) are called Kondratiev spaces of general-
ized functions.

Remark 2.12. Let g € Z,, 7 € T and 8 € [0, 1]. One can introduce on Py, scalar products
(+,*)rq.p by setting for f, g € Py of form (19)

min(Ny,Ng)

(f> g)T,q,ﬂ = Z (n|)l+,32qn(f(n)’ g(n))fH@ma

n=0

and define “parametrized Kondratiev spaces of test functions” (7—[7)5 as closures of Py, with
respect to the norms generated by these scalar products. But (H.)? ¢ (L?) if g < 1,
generally speaking, so, we can not consider (7—[7)5 with § < 1 as spaces of test functions.

Finally, we describe natural orthogonal bases in the spaces (H_,)_,. Let us consider the
chains

D' 5y 5 ) 5 B o pom (29)

ext — -7 D/(m) =

ind lim,cp ”H(, are the spaces dual of 7-I,®m DEm correspondingly with respect to H

m € Z, (for m = 0, D = ¥ = %O = 4 = pO® = R), where H"

emt

The next statement follows from the definition of the spaces (H_,)_, and the general duality
theory (cf. [15]).

Proposition 2.13. There exists a system of generalized functions
{0 FS)y € (Hor)y | FS) e HYY me 2.}

such that
1) for F e 7™ 1™ (o®m F™Y: is a Wick monomial defined in Subsection 1.2;

ext ext ext

2) any generalized funcmon F € (H_;)_, can be presented as a formal series

F Z ext :7 e:ct E H—T? (30)

m=0
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that converges in (H_,)_,, i.e.,

IFIZ — = 1F G, ZQ mESY 2y < 003 (31)
and, vice versa, any formal series (30) with finite norm (31) is a generalized function from
(H-7)-4;

3) for F,G € (H_,)_, the scalar product has a form
(F7 G)(H—-r) q Z 2” qm(Fe(;Z ) Geact )H(m):
m=0

where 7 G™ € %" are the kernels from decompositions (30) for F and G respectively;

4) the dual pairing between F' € (H_,)_, and f € (H,), that is generated by the scalar
product in (L?), has the form

D=3 nl(E, )., 52)
n=0

where F7) € H"™ and f™ € HE" are the kernels from decompositions (30) and (24) for
F and f respectively, (-,-)est is the dual pairing between elements of negative and positive
spaces from chain (29).

Corollary 2.14. F' € (H_,) (resp., F' € (D')) if and only if F' can be presented in form (30)
and norm (31) is finite for some q € Ny -y (resp., for some 7 € T" and some q € Ny ().

3. Extended stochastic integrals on spaces of generalized func-
tions

As we saw in Subsection 1.3, one of the main drawbacks of extended stochastic integral
(13) consists in its unboundedness and, moreover, in dependence of its domain on ti,ty
(see (14)). This essentially restricts the area of possible applications. A possible solution of
this problem—to define stochastic integrals as linear continuous operators acting on spaces of
generalized functions (in particular, from (L?)®H to a suitable space of generalized functions,
see [17]). In this section we introduce such integrals and study some of their properties.

3.1. Extended stochastic integrals on spaces of regular generalized functions

Let F € (I*)0 @ H. It follows from representation (22) for elements of (L?)~/ that F can
be presented in the form

Z o F(m m) € Hext H? (33)
m=0
with ~
||F” L2) B@H Z( ) 52 qm|F |H£’m})®H < . (34)
m=0

It is natural to define an extended stochastic integral on (Lg):qﬁ ®H as a direct generalization
of integral (13). Namely, we accept the following definition.
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Definition 3.1. For F' € (LQ)f ® H t1,ta € [0,400], t1 < ta, we define an extended
stochastic integral f:j’ (w)dL, € (LZ) _; by setting

to oo A
/ Z ®m+1 t1 t2)> . (35)
t1 m=0

where the kernels F[t 1) € Hem are constructed as in Subsection 1.3 by the kernels F™ e
H™ @ H from decomposmon (33) for F.

Since (see (23), (11) and (34))

I e

< ( Hi=Pamem| FE

Z (m+1)H)'" Po-(at) mH‘ [tl t2 ext
27 (m+ 1) < | FIIE

—q—1,-p

(™) o34 )ZPeH’

e:rt
m=0

where ¢ 1= max,ez, [277777™(m + 1)' 77, this definition is well posed and, moreover, the
extended stochastic integral

to
[ et @) e 147 (37)
t1

is a linear continuous operator. It is clear also that integral (37) is an extension of integral
(13) (cf. (35) and (12)), and, in particular, is an extension of the It6 stochastic integral.
Note that in the case ¢ = 8 = 0 (L?)~§ = (L?) and therefore integral (13) can be extended
to a linear continuous operator with values in (L?)~{ (such an extension was considered in
[17]). We remark also that integral (37) can be naturally extended to a linear continuous
operator acting from (L?)7% @ 7-[, to (L?)7; and, as it follows from calculation (36), in the
case 8 = 1 the operator ft w)dL, D (L2, ® H — (L?)Z,, defined by (35), is a linear
continuous one.

Remark 3.2. Sometimes it can be convenient to consider the extended stochastic integral
given by (35) as an operator acting from (L2) ® H to (LQ)*;?. In the case g < 1 this
operator will be unbounded, but closable: if we take the set of F € (Lz) ® 7—[ such that
H . dLuHiqﬁB < oo as its domain, then ftl w)dL, : (L) @H — (LQ) is a closed

operator; this can be proved by analogy with the case ¢ = § = O, see [16].

It was proved in |16] that extended stochastic integral (13) is the adjoint operator to the
Hida stochastic derivative. Let us show that this property holds true for integral (37).

Definition 3.3. Let t;,ty € [0,+00], t; < t5. For g € (L2)§Jrl we define a Hida stochastic
derivative 1y, 1,)(-)0.g € (L*)7 ® M by setting

[e.e]

1[t1,t2)(')ag = Z(n + 1): <o®n, g(n+l)(')1[t1,t2)(')> 5 (38)

n=0

where g("t1) ¢ ’HEZ;FU, n € Z., are the kernels from decomposition (5) for g, considered as

elements of H") ® H (see Subsection 1.4).
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Since (see (15) and (20))

i 091 g = DD 2274 120D (g (e,
. n=0 (39)
Z 1+52(q+1)(n+1 ’g(nJrl ext[(n + 1)1 /82 - n] < CHg”q—i-l B

n=0
where ¢ := max,cz, [(n+1)'7#279717"]_ this definition is well posed and, moreover, the Hida
stochastic derivative

1[t1,t2)(')a : (LZ)S-H — (Lz)g ®@H (40)
is a linear continuous operator. It is clear also that this derivative is a restriction of derivative
(17) onto (L2)§+1. We note that the restriction of derivative (40) onto (L?)? can be considered
as a linear continuous operator 1y, 4,)(-)0. : (L?)? — (L*)” ® H; and, as it follows from
calculation (39), in the case 3 = 1 the operator 1y, 4,)(-)0. : (L?); — (L?); ® M, defined by
(38), is a linear continuous one.

Remark 3.4. Sometimes it can be convenient to consider the Hida stochastic derivative
given by (38) as an operator acting from (L?)? to (L?)f ® H. In the case § < 1 this
operator will be unbounded, but closable: if we take the set of g € (L?)? such that
Hl[tlh)(-)8.g|](L2)q3®H < 00 as its domain, then 1y, 4,)(-)0. : (L?)7 — (L?) @ M is a closed
operator; this can be proved by analogy with the case ¢ = 5 = 0, see [16].

Theorem 3.5. For arbitrary tq,ts € [0, +00], t1 < t9, extended stochastic integral (37) and
Hida stochastic derivative (40) are mutually adjoint operators.

Proof. By analogy with [16], Subsection 2.2, one can show that for F' € (LQ):g ® H and
c (L2)/3
g q+1
to R
([ P g) = (FO.1000009) gy (41)
where (-, -)(12)en denotes the dual pairing generated by the scalar product in (L*)®@%H. Since
operators (37) and (40) are continuous ones, the result of the theorem follows from (41). [

Remark 3.6. The result of this theorem holds true for the extended stochastic integral
ft2 o(u)dL, : (L*)™" @ H — (L?)7# and the Hida stochastic derivative 1y, 4,)(-)0. : (L?)? —
(L?)? ® H; in the same way as for ft w)dL, L (I @M — (L2)Z) and 1y, 4,(-)0. :
(L*)5 — (L*)8 @ H (see Remarks 3.2 and 3 4) in the last case these (unbounded) operators
are closed. The proof is quite analogous to the corresponding proof in the case ¢ = 8 = 0,

see Subsection 2.2 in [16]: it is necessary to use (41) and to verify that the domains of
fttf o(u)dL, and (1j, ,)(-)9.)*o (correspondingly of 1y, +,)(+)0. and (ftff odL)") coincide.
3.2. Extended stochastic integrals on spaces of nonregular generalized functions

Let ' € (H_;)—, ® H. It follows from representation (30) for elements of (H_,)_, that F
can be represented in the form

Z ext 5 Fe(;rtl,) € 7_[(_”71_) ® H7 (42)

m=0
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with
”FH q®7‘[ - 22 qml El‘t H(m>®7'[ 0. (43)

In order to define an extended stochastic mtegral on (H_,)_4®H, we need some preparation.
Consider a family of chains

DO S YO 5 WO o YO S DI e N, (44)
Since the spaces of test functions in chains (44) and (29) coincide, there exists a family of
natural isomorphisms

U, : D™ — Do
such that for all F?) € D™ and fm ¢ p&m
<Fé$ 7f(m >89€t - <U Fe(:gz)af( )>
It is easy to see that the restrictions of Uy, onto H_T are isometrical isomorphisms between
H™ and HE™.
Definition 3.7. Let t;,ts € [0, +00], t1 < t2, and F € (H_,)_,® H. We define an extended
stochastic integral fttf F(u)dL, € (H_-)_q by setting

to _ o ~(m
AR SHC (43

where
B = Unt {Pr[(Un @ D) FS) 1y 0y ()]} € HOY, (46)

€xt,[t1,t2)
Pr is the symmetrization operator (more exactly, the orthoprojector acting for each m € Z
from HE™ @ H to HEIT, ™ H(_TZ ® H, m € Z,, are the kernels from decomposition

ext,

(42) for F, Uy=1:R = R.
Since
Bl = | Pr{(Un 1>Fé;z?.1[t1 ) Nlygomes
< (Un ® DFGD yomgp = [Pt by o

and therefore (see (31) and (43))

to 0
o Z m+1)| 2
- e:ct [tl,tg H(mﬂ)

(m) 2
< 2 I Z 2 qm‘FeSEt H(”l)@f}_[

S
=27 FllG_)_ e
this definition is correct and, moreover, the extended stochastic integral

/t o)Ly (M) g @ H = (Ho) s (47)

is a linear continuous operator.
In what follows, we will show that integral (47) is an extension of integral (13), but at first
let us establish an interconnection between integral (47) and the Hida stochastic derivative.
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Definition 3.8. Let ¢1,t, € [0,+00], t1 < ta. For g € (H,), we define a Hida stochastic
derivative 1y, 4,)(-)0.9 € (H.), ® H by formula (38), where ¢""*) € HZ"1 n € Z,, are the
kernels from decomposition (24) for g, considered as elements of HE" ® H.

Since (see (25))

111,00 (D091t yyore = (04 1)) gD (1, ) () e
n=0
<270) ((n+ 1)1)2200 g2 < 279 g2
n=0

this definition is well posed and, moreover, the Hida stochastic derivative
1[t1,t2)(')a : (HT)Q — (HT)q ®H (48)

is a linear continuous operator. Moreover, as it follows from construction of the kernels
gt € H") @ H from (16) (see Subsection 1.4), this derivative is the restriction of
derivative (17) onto (H,),. We also note that the restrictions of derivative (48) onto ()
and (D) are linear continuous operators 1y, +)(-)0. : (H,) — (H,;) ® H and 1y, 4,)(-)0. :
(D) — (D) ® H respectively.

Theorem 3.9. For arbitrary ty,ty € [0, +00], t; < to, extended stochastic integral (47) and
Hida stochastic derivative (48) are mutually adjoint operators.

Proof. Using (45), (24), (32), (46), (38) and (42), for F € (H_,)_,® H and g € (H,), we
obtain

(o7, g™) )

NE

«f P, g) = (3 e )

m=0 n

Il
o

=S (m+ DUED) 0 e

m=0
= Z(m F V)Y (Up @ DVES 1y, 1), D)
m=0
= 3" ml(m 4 D(EE, gD ()10 ()
: ext, [t1,t2) 7_[(87;%)(8?_[
m=0
= (D B >+ 1) (0%, g (1 ) () 2) L2y
m=0 n=0

= (F ')7 1[t1,t2)(')ag)(L2)®H~

Since operators (47) and (48) are continuous, the statement of the theorem follows from this
calculation. 0

Corollary 3.10. Extended stochastic integral (47) is an extension of integral (13).
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Proof. The result follows from the above theorem, (18) and the fact that derivative (48) is
the restriction of derivative (17) onto (H,),. O

Remark 3.11. The statements of Theorem 3.9 and its corollary hold true for fttf o(u)dL, :
(H_,) @ H — (H_,) (correspondingly j;tlz o(u)dL, : (D)) @ H — (D')) and 1, 1,)(-)0. :
(H;) = (H.) @ H (correspondingly 1y, 1,)(-)0. : (D) = (D) @ H).

Finally, as is easy to see now, if F € (D) ®@ H N (L?)™' @ H then :12 F(u)dL, =
J? F(w)dL, € (D) N (L*)~".
Stochastic derivatives on the spaces of generalized functions will be considered in another

paper.
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