Решение задачи (5), (6) эквивалентно решению системы нелинейных алгебраических уравнений

$$z_1 (z_1^0, z_2^0, z_3^0, z_4^0, z_5^0, 1) = 0,$$

$$z_3 (z_1^0, z_2^0, z_3^0, z_4^0, z_5^0, 1) = 0,$$
(8)

 $z_5(z_1^0, z_2^0, z_3^0, z_4^0, z_5^0, 1) + (v - 1) z_4(z_1^0, z_2^0, z_3^0, z_4^0, z_5^0, 1) + (1 - v) q_{T_2} = 0$

относительно неизвестных z_2^0 , z_3^0 , z_5^0 и решению задачи Коши

$$\frac{d\vec{z}}{d\rho} = \vec{f}(\vec{z}, \ \rho), \tag{9}$$

$$\vec{z}(0) = \vec{z}_0, \tag{10}$$

где $\vec{z_0} = (z_1^0, z_2^0, z_3^0, z_4^0, z_5^0).$

Для решения системы (8) можно использовать разностный аналог одного из методов типа Ньютона — Канторовича. Учитывая, что при этом для решения краевых задач необходимо большое количество вычислений, чтобы получить значения функций z_1 , z_3 , z_5 системы (8) и матрицы Якоби с разностного аналога, эффективнее использовать рекурсивные итерационные методы [1] с оптимальным выбором параметра рекурсии. Они удобны для вычислений на ЭВМ и дают возможность так подобрать параметр рекурсии, чтобы метод был наиболее эффективным в смысле количества операций. Для решения системы нами использована вычислительная схема [1] с оптимальным параметром рекурсии t=3. Алгоритм решения задачи реализуется на 3BM «M-222». Программа может быть использована для произвольных значений параметров γ , α , q_T , q_T , и при других условиях закрепления оболочки.

В качестве примера рассмотрена пологая сферическая стальная (марки 1X18H9T) (см. [3]) оболочка при различных параметрах подъема $\gamma = 1$, 2, 3, 4. На рисунке приведена зависимость максимального прогиба W* в центре от температурной нагрузки q_{T_*} при указанных γ_* .

Данные результаты исследований согласуются с полученными другим методом [5].

- 1. Бартиш М. Я., Щербина Ю. Н. Итерационные формулы, получаемые с помощью ре-
- курсии.— В кн.: Математический сборник. Киев: Наук. думка, 1976, с. 50—53.

 2. Бартіш М. Я., Ярема Л. Л. Про застосування одного класу методів типу Ньютона— Канторовича до розв'язування нелінійних крайових задач.— В кн.: Питання якісної теорії диференціальних рівнянь та їх застосування. К.: Ін-т математики АН УРСР, 1978, c. 3—4.
- 3. Безухов Н. И., Бажанов В. Л., Гольденблат И. И. и др. Расчеты на прочность, устойчивость и колебания в условиях высоких температур. — М.: Машиностроение, 1965. —
- 4. Шаманский В. Е. Методы численного решения кревых задач на ЭЦВМ.— Киев : Наук.
- думка, 1966.— Ч. 2, с. 8—11. 5. Ярема С. Я., Желевняк Т. В. Осесимметричная температурная задача гибких пластин и пологих оболочек. — Тепловые напряжения в элементах конструкций, 1965, вып. 5, c. 287-296.

Львовский университет

Поступила в редколлегию 29.12.80

УДК 517.949.8+536.12

Л. Е. Губаль, Н. И. Иванчов, М. Д. Коркуна

ОБ ОДНОЙ ЗАДАЧЕ НЕЛИНЕЙНОЙ ТЕПЛОПРОВОДНОСТИ С ДВИЖУЩИМСЯ ИСТОЧНИКОМ ТЕПЛА

Рассмотрим применение метода малого параметра и метода сеток к решению задачи об определении температурного поля в бесконечной плите при интенсивном поверхностном нагреве источником тепла постоянной мощности. который движется с постоянной скоростью по одной из поверхностей плиты. На другой поверхности плиты поддерживается постоянная температура. При решении задачи учтена нелинейная зависимость теплофизических характеристик материала от температуры. В подвижной системе координат эта задача сводится к решению уравнения

$$c(T)\frac{\partial T}{\partial t} = \operatorname{div}(\lambda(T)\operatorname{grad}T) + c(T)b\frac{\partial T}{\partial x}, \quad 0 < z < H, \quad t > 0$$
 (1)

с начальными и краевыми условиями

$$T|_{t=0} = T_0, (2)$$

$$-\lambda (T) \frac{\partial T}{\partial z} \Big|_{z=0} = \tilde{q}, \quad T|_{z=H} = T_0, \tag{3}$$

где c(T) — коэффициент объемной теплоемкости; $\lambda(T)$ — коэффициент теплопроводности; b = const — скорость движения источника тепла;

$$T_0=\mathrm{const};$$
 $\tilde{q}=\left\{ egin{array}{ll} q=\mathrm{const} & \mathrm{при}\ x^2+y^2\leqslant R^2, \\ 0, & \mathrm{прu}\ x^2+y^2>R^2. \end{array}
ight.$

С помощью подстановки Кирхгофа

$$u(x, y, z, t) = \int_{T_{-}}^{T(x,y,z,t)} \lambda(\tau) d\tau$$

задача (1) — (3) сводится к виду

$$\frac{\partial u}{\partial t} = a(u) \Delta u + b \frac{\partial u}{\partial x}, \qquad (4)$$

$$u|_{t=0} = 0, \quad \frac{\partial u}{\partial z}\Big|_{z=0} = -\tilde{q}, \quad u|_{z=H} = 0.$$
 (5)

Здесь

$$a\left(u\right)=\frac{\lambda\left(T\right)}{c\left(T\right)}.$$

Предположим, что

$$a(u) = a_0^{(j)} + \varepsilon a_1^{(j)} u + \varepsilon^2 a_2^{(j)} u^2 + \cdots, \ \theta_{j-1} \leq u < \theta_j, \ j = \overline{1, k}.$$
 (6)

В соответствии с данным представлением a(u) разбиваем процесс нахождения температуры тела на k этапов, на каждом из которых решение задачи (4), (5) отыскиваем методом малого параметра в виде

$$u^{(i)} = u_0^{(i)} + \varepsilon u_1^{(i)} + \varepsilon^2 u_2^{(i)} + \cdots$$
 (7)

Для функций $u_i^{(j)}$ ($i=0,1,2,...;j=\overline{1,k}$) получаем задачи

$$\frac{\partial u_0^{(j)}}{\partial t} = a_0^{(j)} \Delta u_0^{(j)} + b \frac{\partial u_0^{(j)}}{\partial x}, \quad u_0^{(j)} \big|_{t=t_{j-1}} = u_0^{(j-1)} \big|_{t=t_{j-1}}
\frac{\partial u_0^{(j)}}{\partial z} \big|_{z=0} = -\tilde{q}, \quad u_0^{(j)} \big|_{z=H} = 0,$$
(8)

$$\frac{\partial u_1^{(j)}}{\partial t} = a_0^{(j)} \Delta u_1^{(j)} + b \frac{\partial u_1^{(j)}}{\partial x} + a_1^{(j)} u_0^{(j)} \Delta u_0^{(j)},$$

$$u_1^{(j)}|_{t=t_{j-1}} = u_1^{(j-1)}|_{t=t_{j-1}}, \quad \frac{\partial u_1^{(j)}}{\partial z}|_{z=0} = 0, \quad u_1^{(j)}|_{z=H} = 0, \tag{9}$$

где $t_0=0;\; u_i^{(0)}\mid_{t=0}=0;\; t_j$ — момент времени, когда происходит переход от j-го этапа к j+1-му.

С помощью замены
$$u_i^{(j)} = e^{-\frac{b}{2a_0^{(j)}}x - \frac{b^2}{4a_0^{(j)}}tv_i^{(j)}}$$
 задачи (8), (9) сводятся

к таким:

$$\frac{\partial v_0^{(j)}}{\partial l} = a_0^{(j)} \Delta v_0^{(j)}, \quad v_0^{(j)}|_{t=l_{j-1}} = v_0^{(j-1)} e^{\frac{b}{2} \left(x + \frac{bt}{2}\right) \left(\frac{1}{a_0^{(j)}} - \frac{1}{a_0^{(j-1)}}\right)}|_{t=l_{j-1}}, \quad (10)$$

$$\frac{\partial v_0^{(j)}}{\partial z} = -q \exp\left(\frac{b}{2a_0^{(j)}} x + \frac{b^2}{4a_0^{(j)}} t\right), \quad v_0^{(j)}|_{z=H} = 0.$$

$$\frac{\partial v_1^{(j)}}{\partial t} = a_0^{(j)} \Delta v_1^{(j)} + a_1^{(j)} v_0^{(j)} \left(\Delta v_0^{(j)} - \frac{b}{a_0^{(j)}} \frac{\partial v_0^{(j)}}{\partial x} + \frac{b^2}{4 \left(a_0^{(j)}\right)^2} v_0^{(j)}\right) \times \\
\times \exp\left(\frac{b}{2a_0^{(j)}} x - \frac{b^2}{4a_0^{(j)}} t\right),$$

$$v_1^{(j)}|_{t=l_{j-1}} = v_1^{(j-1)} e^{\frac{b}{2} \left(x + \frac{bt}{2}\right) \left(\frac{1}{a_0^{(j)}} - \frac{1}{a_0^{(j-1)}}\right)}|_{t=l_{j-1}}$$

$$\frac{\partial v_1^{(j)}}{\partial z}|_{z=0} = 0, \quad v_1^{(j)}|_{z=H} = 0,$$

решения которых представим с помощью функции Грина [1]

$$G(x, y, z, t, \xi, \eta, \zeta, \tau) = \frac{1}{2 \sqrt{a_0^{(j)}(t-\tau)}} \times \sum_{n=-\infty}^{\infty} (-1)^n \left(\exp\left(-\frac{(x-\xi)^2 + (y-\eta)^2 + (z-\frac{r}{z} + 2nH)^2}{4a_0^{(j)}(t-\tau)}\right) + \exp\left(-\frac{(x-\xi)^2 + (y-\eta)^2 + (z+\zeta+2nH)^2}{4a_0^{(j)}(t-\tau)}\right) \right).$$

Переходя к цилиндрической системе координат и выполняя при этом некоторые элементарные преобразования, получаем

$$v_0^{(1)}(r, \varphi, z, t) = \frac{q}{2\sqrt{\pi a_0^{(1)}}} e^{\frac{b^2}{4a_0^{(1)}}t} \sum_{n=-\infty}^{\infty} (-1)^n \int_0^t d\tau \int_0^R \tau^{-\frac{3}{2}} \times \exp\left(-\frac{b^2}{4a_0^{(1)}}\tau - \frac{r^2 + \rho^2 + (z + 2nH)^2}{4a_0^{(1)}\tau}\right) \times \times I_0\left(\frac{\rho \sqrt{(b\tau + r)^2 + 2b\tau r (\cos\varphi - 1)}}{2a_0^{(1)}\tau}\right) \rho d\rho,$$

$$v_0^{(2)}(r, \varphi, z, t) = \frac{q}{2\sqrt{\pi a_0^{(2)}}} e^{\frac{b^2}{4a_0^{(2)}}t} \sum_{n=-\infty}^{\infty} (-1)^n \int_0^{t-t_1} \frac{d\tau}{\tau^{\frac{3}{2}}} \times \times \int_0^R \exp\left(-\frac{b^2}{4a_0^{(2)}}\tau - \frac{r^2 + \rho^2 + (z + 2nH)^2}{4a_0^{(2)}\tau}\right) \times \times I_0\left(\frac{\rho \sqrt{(b\tau + r)^2 + 2b\tau r (\cos\varphi - 1)}}{2a_0^{(2)}\tau}\right) \rho d\rho + \frac{e^{\frac{b^2}{4}}\left(\frac{1}{a_0^{(2)}} - \frac{1}{a_0^{(1)}}\right)^{t_1}}{8(\pi a_0^{(2)}(t - t_1))^{\frac{3}{2}}} \times \times \sum_{n=-\infty}^{\infty} (-1)^n \int_0^H d\zeta \int_0^2 d\psi \int_0^\infty \rho v_0^{(1)}(\rho, \psi, \zeta, t_1) e^{\frac{b}{2}\left(\frac{1}{a_0^{(2)}} - \frac{1}{a_0^{(1)}}\right)\rho \cos\psi} \times \left(\exp\left(-\frac{r^2 + \rho^2 - 2r\rho\cos(\varphi - \psi) + (z - \zeta + 2nH)^2}{4a_0^{(2)}(t - t_1)}\right) + \exp\left(-\frac{r^2 + \rho^2 - 2r\rho\cos(\varphi - \psi) + (z + \zeta + 2nH)^2}{4a_0^{(2)}(t - t_1)}\right) d\rho.$$

Аналогично получаются решения для $u_0^{(j)}$ $(i = \overline{3, k})$ и $u_i^{(j)}$ (i = 1, 2, ...; $i = \overline{1, k}$). При решении задачи (1) — (3) методом сеток рассматривалась плита конечных размеров, на которой кроме условий (3) задавались также условия на боковых поверхностях

$$T|_{x=\pm a} = T_0, \quad T|_{y=\pm a} = T_0.$$
 (12)

Конечные размеры плиты выбирали из условия, что дальнейшее увеличение размеров плиты (длины и ширины) не влияло на распределение температуры в плите.

Задачу (1) — (3), (12) решали по явной схеме метода сеток [2] с использованием симметрии относительно плоскости ХОХ. Производные в уравнении и граничном условии аппроксимировались с погрешностью $o(h_i^2)$ по

z	Метод малого параметра			Метод сеток		
	$ \begin{array}{c} x = 0 \\ y = 0 \end{array} $	$ \begin{aligned} x &= -0.5 \\ y &= 0 \end{aligned} $		$ \begin{aligned} x &= 0 \\ y &= 0 \end{aligned} $	$ \begin{array}{c} x = -0.5 \\ y = 0 \end{array} $	$ \begin{array}{c} x = -1 \\ y = 0 \end{array} $
0 0,5 1 1,5 2 2,5 3 3,5	2012 1398,9 952,71 673,49 475,90 345,27 247,16 169,14	2083 1467,9 1006.4 707,17 498,25 360,98 256.93 173.67	2075,2 1466,1 1014,1 707,98 502,43 365,62 260,84 175,78	2043,5 1450,4 1014,4 659,74 459,98 335,78 242,03 166,65	2096,8 1502,7 1063,7 701,6 482,73 349,97 250,92 170,51	2077,4 1487,4 1060,7 710,23 498,26 355,10 254,5 172,21

пространственным переменным и с погрешностью $o\left(\Delta t\right)$ по временной переменной. Схема учета нелинейностей безытерационная. Для устойчивости вычислений соотношение между шагами Δt и h_i определяли из условия

$$\frac{\Delta t}{\min{(h_t)^2}} = \frac{1}{6} \frac{\min{c(T)}}{\max{\lambda(T)}}.$$

Методом малого параметра найдено $U_{0,j}^{(j)}(j=1,2,3)$ в случае, когда

$$a\left(u\right) = \begin{cases} 0,13 & \text{при} & 0 \leqslant u \leqslant 22\,000, \\ 0,14 & \text{при} & 22\,000 \leqslant u \leqslant 25\,000, \\ 0,021 & \text{при} & 25\,000 \leqslant u \leqslant 40\,000. \end{cases}$$

Для метода сеток теплофизические характеристики тела задавались в виде кусочно-линейных функций температуры. Выбирали шаг сетки по пространственным переменным постоянным (h=0,0005 м), а по времени — $\Delta t = 0.898082 \cdot 10^{-6} \text{y}.$

В таблице приведены результаты, полученные обоими методами для установившегося теплового режима при H=0,004 м, $q=3,36\cdot 10^7$ ккал/ч \times \times M², $R = 0{,}002$ M, $b = 11{,}89$ M/4, $T_0 = 100^{\circ}$ C.

- 1. Беляев Н. М., Рядно А. А. Методы нестационарной теплопроводности.— М.: Высш. школа, 1978.— 328 с. 2. Самарский А. А. Теория разностных схем.— М.: Наука, 1977.— 656 с.

Львовский университет

Поступила в редколлегию 20.03.81