Если снова воспользоваться формулой (2), подставив вместо $p_1^a(x)$, $p_2^A(x)$ и $p_3^L(x)$ их выражения (см. [2]), то получим теорему 2.5 из работы [2].

Аналогичное представление будет иметь место, если применить другие формулы для производных Радона — Никодима при сдвиге, линейной и соответственно нелинейной заменах. Весьма общие результаты для таких производных содержатся в работе [4].

1. Ковальчик И. М. Линейные операторные уравнения и континуальный интеграл по мере Гаусса. — Теория вероятностей и мат. статистика, 1980, вып. 22, с. 66—78.

2. Ковальчик И. М. Формулы преобразования обобщенной меры Винера в пространстве непрерывных вектор-функций двух переменных и их приложения.— Львов, 1981.— 72 с.— (Препринт / АН УССР Физ.-мех. ин-т; № 52).

Ковтун I. I. Про розв'язок деякого нелінійного інтегрального рівняння через інтеграл Вінера. — Доп. АН УРСР. Сер. А, 1969, № 6, с. 509—514.
 Янович Л. А. Приближенное вычисление континуальных интегралов по гауссовым ме-

рам. — Минск: Наука и техника, 1976. — 384 с.

Львовский политехнический институт

Получено 17.05.82

УДК 517.63

О. В. Побережный

ПРИМЕНЕНИЕ БИОРТОГОНАЛЬНЫХ РАЗЛОЖЕНИЙ ДЛЯ ОБРАЩЕНИЯ ПРЕОБРАЗОВАНИЯ ЛАПЛАСА

Задачу восстановления оригинала f(t) по его изображению Лапласа F(s)можно рассматривать как задачу решения интегрального уравнения I рода

$$\int_{0}^{\infty} e^{-st} f(t) dt = F(s). \tag{1}$$

Для получения решения уравнения (1) поступим следующим образом [3]. Предполагаем, что известно преобразование Лапласа F(s) функции f(t)с некоторой абсциссой абсолютной сходимости у1. Рассмотрим преобразование (1) при условии Re s $\geqslant \gamma_0 > \gamma_1$. Используя теорему смещения преобразования Лапласа, соотношение (1) можно записать так:

$$\int_{0}^{\infty} e^{-\gamma_0 t} e^{-st} f(t) dt = F(\gamma_0 + s).$$
 (2)

После замены переменной $t = -\frac{\ln x}{g}$ уравнение (2) примет вид

$$\int_{0}^{1} x^{\frac{s}{\sigma}} \varphi(x) dx = \sigma F(\gamma_0 + s), \tag{3}$$

где обозначено $\varphi(x) = x^{\frac{\gamma_0}{\sigma} - 1} f\left(-\frac{\ln x}{\sigma}\right), \ \sigma > 0.$

Если системы функций $\xi_n(x) \in L^2$ и $\eta_n(x) \in L^2$ образуют биортонормированную систему на множестве $x \in [0, 1]$, т. е.

$$\int_{0}^{1} \xi_{n}(x) \, \eta_{m}(x) \, dx = \begin{cases} 0, & m \neq n, \\ 1, & m = n, \end{cases} \tag{4}$$

тогда для $\phi(x) \in L^2$ справедливы разложения [1]

$$\varphi(x) = \sum_{n=0}^{\infty} a_n \xi_n(x), \ \varphi(x) = \sum_{n=0}^{\infty} b_n \eta_n(x),$$
 (5)

где

$$a_n = \int_{0}^{1} \varphi(x) \, \eta_n(x) \, dx; \ b_n = \int_{0}^{1} \varphi(x) \, \xi_n(x) \, dx.$$
 (6)

Представляя $\xi_n(x)$ и $\eta_n(x)$ в виде

$$\xi_n(x) = \sum_{j=0}^n c_j^n x^{\kappa(j)}, \ \eta_n(x) = \sum_{j=0}^n d_j^n x^{\gamma(j)},$$
 (7)

из соотношений (6) с учетом (3) находим коэффициенты a_n и b_n разложения (5) через известную функцию F (s):

$$a_n = \sigma \sum_{i=0}^n d_i^n F[\gamma_0 + \sigma \gamma(j)], \ b_n = \sigma \sum_{i=0}^n c_i^n F[\gamma_0 + \sigma \chi(j)].$$
 (8)

Зная a_n и b_n , определяем искомую функцию

$$f(t) = e^{-(\gamma_0 - \sigma)t} \sum_{n=0}^{\infty} a_n \xi_n (e^{-\sigma t}) = e^{-(\gamma_0 - \sigma)t} \sum_{n=0}^{n} b_n \eta_n (e^{-\sigma t}).$$
 (9)

Как частный случай получим известную в литературе єхему обращения преобразования Лапласа с помощью ортогональных многочленов [2]. Для этого достаточно положить $\xi_n(x) = \eta_n(x)$ и предположить их ортогональность.

Построение биортонормированных систем в общем случае весьма трудоемкий процесс [1]. Однако в ряде случаев для достаточно широкого класса функций такие системы можно построить довольно легко. Рассмотрим, в частности, биортогональные разложения в L^2 . Имеет место следующая теорема.

Теорема. Система функций

$$\xi_n(x) = \omega_1(x) P_n^{*(\alpha,\beta)}(x), \ \eta_n(x) = \omega_2(x) P_n^{*(\alpha,\beta)}(x)$$
 (10)

образует биортонормированную систему на множестве $x \in \{0, 1\}$ при условии, что

$$\omega_1(x)\,\omega_2(x) = \frac{1}{r_n}\,x^\alpha\,(1-x)^\beta,$$
 (11)

где $P_n^{*(\alpha,\beta)}(x)$ — смещенные многочлены Якоби [4] вида

$$P_n^{*(\alpha,\beta)}(x) = \sum_{i=0}^n \alpha_i^n x^i =$$

$$= \sum_{j=0}^{n} \frac{(-1)^{n} \Gamma(n+1+\beta)}{n! \Gamma(1+\beta)} \frac{a(a+1) \dots (a+j-1) b(b+1) \dots (b+j-1)}{j! c(c+1) \dots (c+j-1)} x^{j};$$

$$r_{n} = \frac{\Gamma(n+\alpha+1) \Gamma(n+\beta+1)}{n! (2n+\alpha+\beta+1) \Gamma(n+\alpha+\beta+1)}; a = n+\alpha+\beta+1;$$
(12)

 $b=-n;\;c=1+\beta;\;\alpha>-1;\;\beta>-1;\;\Gamma\left(\alpha\right)$ — гамма-функция.

Доказательство. Подставляя выражения (10) в условие биортонормированности (4) и учитывая соотношение (11), приходим к условию ортонормированности смещенных многочленов Якоби с весом $x^{\alpha}(1-x)^{\beta}$ и нормирующим множителем $\frac{1}{r_n}$, что и доказывает теорему.

Для получения коэффициентов a_n и b_n разложения (5), определяемых формулами (8), необходимо иметь представление функций $\xi_n(x)$ и $\eta_n(x)$ в виде (7). Учитывая, что для смещенных многочленов Якоби представление в виде ряда по степеням x' определяется формулой (12), из представления (10) заключаем, что $\omega_1(x)$ и $\omega_2(x)$ должны иметь аналогичные разложения. Для выполнения последнего, как видно из соотношения (11), достаточно предположить, что $\beta=k=0,1,2,...$, т. е. принимает целочисленные значения k из области изменения β .

Рассмотрим примеры. Пусть

$$\omega_1(x) = \frac{x^{\alpha}}{\sqrt{r_n}}, \quad \omega_2(x) = \frac{(1-x)^k}{\sqrt{r_n}},$$

тогда

$$\xi_n(x) = \frac{x^{\alpha}}{\sqrt{r_n}} P_n^{*(\alpha,k)}(x), \ \eta_n(x) = \frac{(1-x)^k}{\sqrt{r_n}} P_n^{*(\alpha,k)}(x),$$

или

$$\xi_n(x) = \sum_{i=0}^n c_{j,i}^n x^{j+\alpha}, \ \eta_n(x) = \sum_{i=0}^n d_i^n \sum_{i=0}^n (-1)^k \binom{k}{i} x^{j+i}.$$

Коэффициенты разложения a_n и b_n в этом случае имеют вид

$$a_n = \sigma \sum_{i=0}^n d_i^n \sum_{i=0}^k (-1)^k \binom{k}{i} F[\sigma(1+i+j)], \ b_n = \sigma \sum_{i=0}^n c_j^n F[\sigma(1+j+\alpha)],$$

где $d_i^n = c_i^n = \frac{1}{\sqrt{r_n}} \alpha_i^n$; $\binom{k}{i}$ — биномиальные коэффициенты. Если положить, что

$$\omega_1(x) = \frac{1}{\sqrt{r_n}}, \ \omega_2(x) = \frac{x^{\alpha}(1-x)^k}{\sqrt{r_n}},$$

получим новые биортонормированные системы. В этом случае

$$\xi_{n}(x) = \sum_{i=0}^{n} c_{i}^{n} x^{j}, \quad \eta_{n}(x) = \sum_{j=0}^{n} d_{j}^{n} \sum_{i=0}^{k} (-1)^{k} {k \choose i} x^{j+i+\alpha},$$

$$a_{n} = \sigma \sum_{i=0}^{n} d_{j}^{n} \sum_{i=0}^{k} (-1)^{k} {k \choose i} F \left[\sigma \left(1+j+i+\alpha\right)\right], \quad b_{n} = \sigma \sum_{j=0}^{n} c_{j}^{n} F \left[\sigma \left(1+j\right)\right].$$

Искомая функция f(t) определяется формулой (9).

При $\alpha=0$, k=0 получаем известные в литературе результаты: обращение преобразования Лапласа с помощью смещенных многочленов Лежандра [2].

Сходимость частных сумм $\phi_N(x)$ к $\phi(x)$ обеспечивается [1] ограниченностью $\left|\sum_{n=0}^N a_n b_n\right|$ равномерно относительно N. Для рассматриваемого класса функций это легко доказывается путем построения мажорантного ряда, обладающего указанными свойствами.

- 1. Качмаж С., Штейнгауз Γ . Теория ортогональных рядов.— М. : Физматгиз, 1958.— 368 с.
- Крылов В. И., Скобля Н. С. Методы приближенного преобразования Фурье и обращение преобразования Лапласа.— М.: Наука, 1974.— 223 с.
- 3. Побережный О. В. О приближенном обращении преобразования Лапласа при помощи биортогональных разложений.— В кн.: Тез. докл. Второго респ. симпоз. по дифференц. и интегр. уравнениям. Одесса, 1978, с. 128—129.

4. Сеге Г. Ортогональные многочлены. — М.: Физматгиз, 1962. — 500 с.

Институт прикладных проблем механики и математики АН УССР, Львов

Получено 17.03.82

УДК 517.63

Я. Д. Пяныло

ОБ ИССЛЕДОВАНИИ ПРИБЛИЖЕННОГО ОБРАЩЕНИЯ ПРЕОБРАЗОВАНИЯ ЛАПЛАСА С ПОМОЩЬЮ МНОГОЧЛЕНОВ ЯКОБИ

Метод приближенного обращения преобразования Лапласа с помощью многочленов Якоби заключается в следующем. Пусть известно изображение Лапласа F(p) функции f(t):

$$F(p) = \int_{0}^{\infty} e^{-pt} f(t) dt.$$
 (1)