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MODE | CRACK INITIATION IN ORTHOTROPIC VISCOELASTIC
PLATE UNDER BIAXIAL LOADING

The subcritical propagation of a crack in orthotropic viscoelastic plate under time-
constant biaxial external loading is investigated on the basis of generalization of
Leonov — Panasyuk — Dugdale crack model for the case of orthotropic materials,
which satisfy a strength condition of arbitrary form. The crack is directed along
one of the anisotropy axes with external loads being applied parallel and perpen-
dicularly to it. For finding the rheological characteristics of composite material the
method of operator continued fractions is applied. The relationships for deter-
mining duration of incubational and transitional periods of crack propagation are
determined on the basis of on the Volterra principle and solution of the correspon-
ding elastic problem. The influence of the biaxiality of external loading on the safe
loading and the subcritical crack growth is analyzed within the framework of the
critical crack opening displacement criterion.

Introduction. Data of experimental researches [1] show stable crack pro-
pagation under low values of strength in viscoelastic materials. In connection
with large mathematical complication in solving crack problems in viscoelastic
materials numerical methods (such as a finite element method and boundary
element method) are widely used [8, 17, 18]. For theoretical research on
subcritical crack propagation in [1] the theory of subcritical crack growth in
anisotropic viscoelastic medium was proposed. Efficiency of the proposed
theory was demonstrated by solving the wide range of new problems on the
long-term fracture for different viscoelastic materials [5, 10, 12, 13, 15]. The
review of works on fracture mechanics of viscoelastic bodies is given in [11].

Much of the research on fracture of anisotropic viscoelastic cracked bo-

dies based on the use of ordinary and modified §,-models of the crack [3, 19].

However, these models, as in the case of isotropic and anisotropic materials,
do not allow to take into account the presence of components of the external
load acting along the crack. However, as shown by experiments [4, 6], even in
the case of static loading biaxiality significantly affects the ultimate state of
bodies with cracks and, consequently, we can expect that this effect alone will
be a prolonged exposure to stress.

To study such problems several nonclassic approaches which take into
account the effect of stresses, acting along a crack, on the fracture-toughness
characteristics were developed. These approaches consist in the following:

1. In studying the problems on compression of cracked bodies by forces
directed along crack planes, it was proposed by Guz to take the criterion of
stability loss of a material in a local near-crack tip region as a fracture
criterion. The basic results in such formulation for different loading schemes
and crack locations are given in [2, 7].

2. The approach based on a more complete allowance for distribution of
stresses near the mode I edge crack, and not just the singular part, was pro-
posed by Larsson and Carlsson [16]. According to this approach, it is assumed

to introduce the second parameter T (in addition to K, or J;), which is a

nonregular term in the expansion of stresses in the vicinity of a crack tip.

3. The approach based on the conception of a crack-tip process zone and
on the additional necessity to satisfy the strength criterion in this zone was
proposed in [14]. This approach allows to generalize the Dugdale model of
crack to the case of orthotropic materials. The use of the proposed model
enables one to take into account the influence of external load components
acting along crack on bodies fracture.

In the present work the subcritical crack growth in orthotropic viscoelas-
tic plate under biaxial loading is investigated based on the proposed crack mo-
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del [14]. The durations of the incubation and transitional periods of subcritical
crack growth are determined on the basis of Volterra principle and solving
the corresponding problem of elasticity problem. The numerical results are
obtained for a specific material. The influence of the degree of biaxiality of the
external loading on the process of subcritical crack development is established.

Crack model. Consider a thin orthotropic plate with a crack of length
2((t) oriented along the Ox -orthotropy axis and subjected to the action of

the normal time-independent loads o, = q, G;O = p > 0 applied at infinity.

Fracture of the plate material is described by the strength criterion in
the general form

F(cy,0,,C;) =0, (1)

where 6,, o, are the principal stresses, C; are the material constants.

The strength condition (1) is considered as an example the Mises — Hill

criterion. This criterion in the case of a plane stress state is described by
9 2
c c G .o
ot oyz_ :S r =1 (2)
(o7) (cy) GG,

where 6?, Gg are the ultimate strengths in the x- and y -axis directions,

respectively. Numerical calculations are made for 6?/Gg =0.8.

To investigate long-term crack propagation by means of the theory of
subcritical crack growth in orthotropic viscoelastic material [1] the modified
Dugdale’s model [14] is used. The following assumptions are made:

1°. Process zones arising near a crack tip take the form of a narrow wed-
ge-shaped sections on the crack continuation. In modeling, they can be repla-
ced by slits of length d whose faces are acted upon by uniformly distributed

coordinate-independent compressive stresses cg (Fig. 1).

SN N N O
-« AY —
o o
< T o T —>
e > —>
-« il 20(t) ,i —
- | 2L(¢) | —>
-« —
RRR R
Fig. 1

&% in the process zone don’t depend on time

o]
2°. Stress components o, y

and satisfy the strength criterion (1) and continuity condition on the crack
front.

3°. The stress components are finite everywhere over the whole region.

0

The stress components G(;:, G,

tions [14]
oy =B(oy —p) +q,F(cy,0,,C;) =0, (3)

are determined by the system of equa-

where B =4 Ef JEY | Ef , Eg are the elastic moduli along the orhotropy axes.
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The length of a process zone d(t) is determined as [14]

1 _ (e _omp 4
L)~ +dm el @

Viscoelastic crack opening displacement. The solution of viscoelastic
problem is obtained as a result of applying the Volterra principle to the
known analytical solution [1]. The viscoelastic displacement of crack faces on
the interval [{(t), L(t)] is expressed in the form

d(x,t) = T* - 8, (x, 1), (5)

where §,(x,t) and T* are determined from corresponding elastic solution
as [14]

8[)("I:) t) =
__,% {x 1 (L0 = 20+ (o) - )0 - @) () +2)
g ((0)+ 2ty +{ (12(0) - &) (1) - £(0) () - )

2 2 2 2
YR PICEE: +JL(t)—£(t)}, ©

\/ x - 02 ()

. E; . E;
= 1 Jz( —1—v21]+—i. 7
JEE; E, Gy

In (7) E|, E;, Gy,, v;, are Volterra’s integral operators of the form

1 1 * 1 1 *
=L 1+ MR B, = L [1+A,R*(B,)],
; Ei)[ 1 Bl ] E; Eg[ 2 BZ ]
1 1 * 1 1 %
—=——[1+ AR (By)], ——=—"—[1+A,R"(B,)], (8)
Gy, sz Va1 Vgl

EY, EJ, GY,, v5, are instantaneous elastic moduli of the material; A,, A,,

Ag, Mys By, By, Bgs B, are rheological parameters of the material; R*(B) are
resolvent operators of the form

R'(B)- f(t) = [R(t - %, B)f(t) dx. ()
0

Then, the function §,(x,t) in the crack tip |x|={(¢), y=0 with al-
lowance for (6) can be written down as follows

46°0(t)
Y Insec 7513[’) .
n 20y

8y (0, t) = (10)

Reducing the number of operators. For investigation of crack growth
the function of integral operators (7) must be presented in form (9). For this
purpose the method of integral continued fractions is applied. As is known for
resolvent operators

Q+AR*B) " =1-AR*(B-1). (11)

From the theory of continued fractions [9]
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025xR ® "2, 0.5AR"(B)

+2 . (12)
K 1+ 0.25AR"(B)
By using (11) and (12) integral operator (7) can be written as
7
T" =T, [ + > R (y]} (13)
j=1
where
_ 1 Ef 0 E?
T(J - 00 2 0 21 0’
E/E, E, Gy
v, =B; —025L,, =12 y,=B',, i=3,.,7,
0.5% 5. A
u1:o5x1(1+ )(“052 ’0),
1772 =171 — B
0.5% 5. A
u2=0.5x2(1+ L )(1+0.5Z ! 0),
Yo =T j=1Y2 ~ Bj
0.5% 0.5A
pi=0.5x‘;72(1+ — )(1+ — j i=3,...,17, (14)
Bio — 71 Bioa — 7y
B(;, j=1,...,5, are roots of equation
1-0.
where
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E, Gyy
k?, j=1,...,5, are solutions of the system of equation
5 ;J;,
1->——==0, i=1..5. (15)
j=1 Bi _Bj
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Consider as the kernel of integral operator (8) the Rabotnov function

» Y?(t _ T)TL(I*OL)*OL

R(t-1,v;) = E,(t—1,y,) = ;}m 0<a<l, v,;<0,

where I'(x) is Euler’s gamma-function.

As numerical example a composite with quartz material and a
polyethylene matrix is investigated. Rheological characteristics of the material
are as follows

E} =11.7-10° MPa, A, = 0.0608sec*™, B, =-0.1283sec” ",
EJ, =19.7-10° MPa, A, =0.0180sec*™", B, =-0.0928sec” ",
Gl,=0.637-10°MPa, A, =0.1398sec®™, B, =-0.0407sec* ",

v, =014, A, =B, =0, a =0.717.

Safe loading. In the case when deformation of viscoelastic bodies is
described by the bounded integral operators there is a safe level of external
loadings when crack growth does not occur for an arbitrarily large time [1].

The safe loading P, is given by

S
5 T,

5GP T, o

where T, = T* -1|t:w, T, =T -1|t:0.

In examined case according to (13) the long-term value T, is defined as

7 WL
Tw=T0{1+Z l}, (17)
i:llyil

where p;, v,, 1 =1,...,7 are defined by (14).

follows

In this case in view of (10) the safe loading is determined by

40, (p,,q,)! T
T 26,(ps,q5) e
where (p,,q,) is the safe loading field.
Since fracture of elastic plate with crack under uniaxial tension (q = 0) is
described by [14]

4To) (p,0)¢,
In sec 0 =
T 20, (p.",0)

0
npl”

(19)

c

(0)

*

where p,’ is the ultimate load in uniaxial tension, then by comparing (18)
and (19) and taking into account (16) the safe loading field (p,,q,) can be de-

fined by
np,”

np T
cg(ps,qs)lncos 5 £ :—ch(pio),ﬂ)lncosm.
y E)

(20)
26, (p,,q,) Lo

Fig. 2 shows the safe loading fields obtained on base of (19) for various
loads pio)/cg =0.1,0.5,0.9. Dash-dotted line corresponds to Mises— Hill

strength condition (2), solid lines correspond to the safe loads (p,,q,), dashed
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lines correspond to ultimate loads (p,,q,) defined by according to the &, -
criterion as [14]

0
np\”)

B (21)
20, (p.”,0)

T
oy (P,,q.)In cos — P = oy (p\”,0)In cos

26, (P.,q.)

S|

Fig. 2

It should be noted that development of crack in viscoelastic body with li-
mited creep takes place only in the range of load change limited by curves
defined by (19) and (21).

Incubational period. During the incubation period (0 <t <t,) there is
crack opening without growth. When the external loading does not change in
time, the duration of the incubation period t, is determined by [1]

t 5
£R(6)d9 = S(ZO) -1, (22)

where 5(£) = T;5,(¢) is the elastic crack opening displacement in a = /.
Taking into account (16) the durability of the incubational period t, can
be defined by
!

Incos ————~——

- oy (p”,0) 20, (p!",0)
>ou; [ RO,7,)d0 =

0

j=1

5 -1. (23)
6,(P,9) 1Incos Oftip
26,(p,q)
Consider new function
n

%r[(n+1)(l—a)+1]’ xr = Y]'t . (24)

t
@y(0,2) = 1 [E,(0,7,)d0 =
0

Due to (22), (24) the durability of the incubational period t, can be written as

(0)
TP,
d o (p,0) " 260 (7, 0)
£y (o vy, ) = -1 (25)
j=1 G, (P,q) lncosonip
26,(p,q)

Fig. 3 shows the durability of the incubational period obtained on the
basis of equation (25) for pio)/cg =0.5. Fig. 3a shows the durability of the

incubational period t, related to external loading p/Gg for different values of

q/cg =-10.2,0.0,0.2. Fig. 3b shows the durability of the incubational period t,
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related to external loading q/cs(zJ for different values of p/cg = 0.44, 0.45, 0.46 .
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Fig. 3

Transitional period. During the transition period (t, <t <t;), the crack
begins its motion and travels a distance equal to the initial size of the process
zone. This period starts at t =t, and continues until ¢, when the crack length
reaches the value ¢, = ¢, + d. Under time-constant load the equation of crack
growth during the transition period has the form [1]

Ty t
SLU)] + B[(t), £o] [ R(t —v)dr + [ R(t — d[((t), ()] dx = 5, (26)
0 t*
where 0[{(t),{,] is the elastic crack opening displacement with length ¢, in
x = £4(t); 9[L(t),L(t)] is the elastic crack opening displacement with length ¢(t)
in x=/£(t).
The durability of transitional period At; =t; —t, is determined as

At
3(¢,) + [ R(At; = 0)3(¢,,0(0+1,)d0 =5, (27)
0
As shown in [1] the next approximation is valid for some integral opera-
tors (for example, for Rabotnov operator)

R™ - f(t) = k(a)(R" - 1)f(1),

Jrnl(@2-a)
o) = S T @5 —a) (28)
Then the durability of transitional period At; is defined by
Aty
O _ 14 k(o) [ R(o)do (29)
5(¢1) )
or, basing on (10) and (19),
(0)
TP,
Incos ————~—
Lo oy(0l”,0) 20, (p”,0)
1+ k(@)Y p, [ R(0,y,)d0 = 2" y: : (30)
j=1 0 Gy(p5 q) ln Cosoip
26,(p,q)

Due to (24) transitional period durability At; can be written as
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(0)
7 ( 0) In cos%
- - Oyl 6,(D, 7,
K(o)(At) 0D @y (o, () ) = 5 y :
j=1 Gy(p:Q) lncosoip
26,(p,q)

-1.

(31)
Fig. 4 shows the durability of transitional period At; obtained on the

basis of equation (31) for pio)/cg =0.5. Fig. 4a shows the durability of the
transitional period At; related to external loading p/cg for different values of
q/csg =-10.2,0.0,0.2. Fig. 4b shows the durability of transitional period At; re-
lated to external loading q/cg for different values of p/cg =0.42, 0.425, 0.43.
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Conclusions. As can be seen from the results, a component of the exter-
nal loading acting along the crack has a significant influence on the level of
safe loading and the duration of different periods of subcritical crack growth
in a viscoelastic body.

Thus, the proposed generalization of the Dugdale crack model on the case
of orthotropic materials can efficiently solve not only problems of fracture

mechanics of elastic bodies, but also the problem of long-term fracture of
bodies with cracks.
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MOYATKOBI ETAMNU JOKPUTUYHOIO PO3BUTKY TPILLUHU
HOPMAIbHOIO BIAPUBY B OPTOTPOIMHIN B’A3KOMPYXXHIW NIACTUHI
B YMOBAX OBOBICHOIO HABAHTAXEHHA

Ha ochoei modugixosarnoi modeai Jleonosa — Ilanactoxa — Jazdetina 0ocaidxicero nouam-
K081 emanu O0OKPUMUYUHOZO DPOCTMY MPIWUHU HOPMAABHOZO 8I0PUSY 8 OPMOMPONHIL
8’ A3KONPYHCHIU naacmuni nid 0i€10 NOCMItiHO20 8 4act 0808ICHOZ0 308HIULHBOZ0 HABAH-
madcenna. s usHaUeHHS PeoN0IUHUX XAPAKMEePUCMUK MAMEePIaLY 3aCTMOCO8AHO
memod aaHyrozoeuxr 0podis. Ha ocrosi npunyuny Boavmeppa ma pose’asxy 8i0nogioHol
NPYAHCHOT 3a0aul OMPUMAHO CNIBBIOHOWEHHSA OAf BU3HAUeHHA 1THKYOayilinozo ma
nepexidnoz0 nepiodie GOKPUMUUHO20 PocTY MPIWuHU. Y pamraxr J, -Kpumepito pyii-
HYBAHHA 00CcAi0xHceHO 8naug 0808iCHOCME 308HIULHBOZO HABAHMANCEHHA HA Oe3neuHe Ha-
BAHMANCEHHA NAACTNUHU 3 MPIWUHOM | OOKPUMUYHUL PO3BUMOK MPIUUHU.

HAYAIbHbIE 3TAMblI AOKPUTUYECKOIO POCTA TPELLUUHbI
HOPMAIbHOIO OTPbIBA B OPTOTPOMHOW BA3KOYNPYrOW NIACTUHE
B YCIOBUAX OBYXOCHOIO HAIPYXXEHUA

Ha octnosanuu moduguyuposarntoti modeau mpewunst Jleonosa — Ilanacroxa — Jazdetina
uccred08aHbl HAUAALHBLE IMaAnbl JOKPUMUUECKO20 POCMA MPeWUHbL HOPMAALLHOZO OM-
PblEA 8 OPMOMPONHOU 8A3KOYNPY20tU naacmure nod delicmeuem NOCMOAHHOZO 80 8pe-
MeHU 08YXoCH020 8HewHez0 HazpyxceHus. Jas onpedeseHus peosozuneckKux napamem-
P08 MAMEPUALL UCTIOABIOBAH Memo0 yenubvlx Opobeil. Ha ocnosaruu nmpunyuna Boawb-
mepa U pewerus coomeemcmeyowet Yynpyeol 3a0aUU NOAYUeHb, COOMHOWeEeHUA 0ad
onpedesenus OAuMEALHOCTNU UHKYOAUUOHHOZ0 U MepexrodHoz0 mepuodos doxpumuuec-
K020 pocma mpewunsl.. B pamxax O, -kxpumepus paspyuienus ucciedosaHo 6AUsHUE

dsyxrocHocmu eHewHell HazPY3KU Ha He30nacHoe HazpyHcenue NAACMUHBL C MPeUWUHOU U
doxpumuyeckutl pPocm mpeuwurbsl.
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