А. О. Камінський, М. Ф. Селіванов, Ю. О. Чорноіван

МОДЕЛЬ ЗРОСТАННЯ І ЗЛИТТЯ ДВОХ КОЛІНЕАРНИХ ТРІЩИН У В'ЯЗКОПРУЖНОМУ ТІЛІ

Для плоскої задачі лінійної в'язкопружності запропоновано модель поширення та злиття двох колінеарних тріщин. Модель побудовано в рамках теорії докритичного розповсюдження тріщин у в'язкопружному середовищі. Як ілюстрацію застосування моделі отримано залежності координат кінців тріщин від часу для широкого діапазону параметрів моделі, серед яких геометричні параметри задачі, інтенсивність зовнішнього навантаження і параметри тріщиностійкості.

Вступ. Задача про поширення тріщини у лінійно в'язкопружному тілі є важливою задачею механіки руйнування. Розв'язанню цієї задачі присвячено чималу кількість робіт (див. огляд у [2]). Досі успіхи у розв'язанні задачі щодо злиття двох тріщин в тілі, матеріал якого виявляє в'язкопружні властивості, є доволі незначними. Це зумовлено тим, що недостатньо розробленою є суміжна проблема взаємного впливу двох тріщин в пружному тілі. Хоча основні методи розв'язання пружної задачі відомі вже доволі давно [1], розробка цієї тематики все ще продовжується [6–11].

Метою запропонованої роботи є побудова моделі злиття двох тріщин у найпростішому випадку їх взаємного розташування – уздовж однієї лінії. В основу моделі покладено розроблену авторами теорію докритичного поширення однієї тріщини. Ця модель, у свою чергу, використовує модель тріщини Леонова – Панасюка – Дагдейла, принцип пружно-в'язкопружної аналогії (або принцип Вольтерра) та критерій критичного розкриття тріщини для прогнозування розвитку тріщини.

Будемо вивчати довготривале зростання в лінійно в'язкопружній ізотропній пластині двох колінеарних тріщин нормального відриву, які мають однакову довжину, під впливом рівномірно розподіленої сили сталої інтенсивності.

1. Постановка задачі. Нехай в нескінченній пластині, матеріал якої має лінійно в'язкопружні властивості, розташовано систему двох колінеарних тріщин однакової довжини. Деформування пластини відбувається в умовах плоского напруженого стану. Зв'язок між напруженнями й деформаціями в лінійно в'язкопружному тілі описуємо у вигляді

$$\sigma_{ij}(t) = \int_{0}^{t} R_{ijk\ell}(t-\tau) d\varepsilon_{k\ell}(\tau), \qquad (1)$$

де $R_{ijk\ell}(t)$ — функції релаксації матеріалу. Розглянемо випадок ізотропії, коли серед функцій R у виразі (1) незалежними будуть лише дві (наприклад, функції, що відповідають модулю Юнга E та коефіцієнту Пуассона v).

До пластини на нескінченності прикладено рівномірно розподілені зусилля інтенсивності p. Напрямок прикладання зусиль збігається з нормаллю до площини тріщини. При розв'язанні задачі про поширення тріщин під дією докритичного рівня зовнішнього навантаження використаємо модель тріщини Леонова – Панасюка – Дагдейла, згідно з якою області нелінійних деформацій матеріалу в околі вершини тріщини моделюються розрізами, на берегах яких діють нормальні до площини розташування тріщини стискаючі напруження інтенсивності σ_0 . Цю характеристику тріщиностійкості, в загальному випадку, слід визначати експериментально. При моделюванні опору матеріалу в області поблизу кінця тріщини напруженнями σ_0 приймаємо їх рівномірно розподіленими по берегах зони нелінійних деформацій і сталими за величиною протягом докритичного підростання тріщин.

ISSN 0130-9420. Мат. методи та фіз.-мех. поля. 2012. - 55, № 1. - С. 61-71.

Введемо декартову систему координат. Початок координат розмістимо на лінії тріщин на однаковій відстані від внутрішніх кінців тріщин, напрямок осі x сумістимо з лінією розташування тріщин. З огляду на симетрію задачі відносно обох осей, зобразимо контур тріщини і покажемо введені геометричні та силові параметри задачі лише в першій координатній чверті (рис. 1).

Розповсюдження тріщин визначається як процес переходу точок області, де є взаємодія берегів, в область, де її немає. У кожний момент часу поширення тріщин граничні умови задачі на границі нижньої півплощини складаються з умов рівності нулеві дотичних напружень уздовж усієї границі, умов рівності нулеві вертикальних переміщень v поза межами тріщини і розрізів, що моделюють область нелінійних деформацій, рівностей $\sigma_{22} = \sigma_0$ у межах згаданих розрізів та $\sigma_{22} = -p$ у межах границь фізичних тріщин. Координати кінців розрізів c і d потрібно визначати з умов скінченності напружень у вершинах тріщин.

Розповсюдження тріщин при докритичному рівні навантаження стримується матеріалом в зоні нелінійних деформацій, поки вертикальні переміщення берегів у кінцях тріщин не перевищать критичного значення v^* . Характеристика v^* разом з σ_0 є характеристикою тріщиностійкості матеріалу.

Таким чином, визначення положень кінців тріщин як функцій часу полягає у розв'язанні рівнянь, які отримуємо прирівнюванням залежності від часу вертикального переміщення у вершинах тріщин до свого критичного значення.

2. Визначення положень кінців тріщин як функцій часу. Пружне переміщення берегів колінеарних тріщин в напрямку осі *y* в точці *x* (рис. 1) в ізотропній пластині запишемо у вигляді [3]

$$v(x) = \frac{4\sigma_0}{\pi} \operatorname{Re} \int_d^x L U(z; a, b) dz, \qquad (2)$$

де $L = \frac{1}{E}$ — модуль податливості ізотропної пластини; U(z; a, b) =

$$= \ln \frac{(d_a z_c + a_c d_z) b_z}{(d_b z_c + b_c d_z) z_a}, \ p_q = \sqrt{p^2 - q^2}, \ p \in \{a, b, d, z\}, \ q \in \{a, b, c, z\}, \ p \neq q$$

Умови обмеженості та неперервності напружень у точках x = c та x = d є такими:

$$d_{c}^{2}\cos^{2}\frac{\pi}{2\rho_{2}} = a_{c}^{2} + b_{c}^{2} - 2a_{c}b_{c}\sin\frac{\pi}{2\rho_{2}},$$

$$d_{a}a_{c}\left[F(k) + \frac{a^{2}}{d_{a}^{2}}\Pi\left(-\frac{d_{c}^{2}}{d_{a}^{2}},k\right)\right] = d_{b}b_{c}\left[F(k) + \frac{b^{2}}{d_{b}^{2}}\Pi\left(-\frac{d_{c}^{2}}{d_{b}^{2}},k\right)\right],$$
(3)

де F(k) і $\Pi(n,k)$ — повні еліптичні інтеграли першого та третього родів відповідно, $k = d_c/d$,

$$\rho_2 = \frac{\sigma_0}{p} \tag{4}$$

– параметр задачі.

Для визначення пружного переміщення (2) необхідно попередньо визначити зовнішні границі розрізів *c* і *d* з виразу (3).

Для розв'язання граничної задачі лінійної теорії в'язкопружності використаємо принцип Вольтерра, згідно з яким операції інтегрування за часом та координатами є комутативними. Зазначимо, що у випадку зміни граничних умов необхідним є додаткове теоретичне обґрунтування зміни порядку інтегрування. У [2] встановлено, що така заміна можлива лише при збільшенні довжини тріщини з часом.

Перейдемо до визначення закону зміни вертикального переміщення як функції часу. У випадку залежності від часу характеристики L і координат кінців тріщини a і b замінюємо величину LU(z;a,b) у виразі (2) інтегралом Больцмана, а величину p – функцією P(t) = ph(t) (де h(t) – одинична функція Гевісайда). Запишемо

$$v[x;a(t),b(t)] = \frac{4\rho_2}{\pi} \operatorname{Re} \int_{d(t)}^x dz \int_0^t L(t-\tau) \frac{d}{d\tau} (P(\tau)U[z;a(\tau),b(\tau)]) d\tau.$$

Далі змінюємо порядок інтегрування і, таким чином, отримуємо вираз для вертикального переміщення берегів тріщин як функції часу в аналогічній до виразу (1) формі згортки

$$v(x,t) = \int_{0}^{t} L(t-\tau) \frac{d}{d\tau} (P(\tau)v[x;a(\tau),b(\tau)]) d\tau , \qquad (5)$$

де

$$v[x; a(t), b(t)] = \frac{4\rho_2}{\pi} \int_{d(t)}^{x} U[z; a(t), b(t)] dz$$

Диференціюючи у (5) і вводячи нормовану функцію релаксації $\ell(t) = L(t)/L_0$ (цю функцію знайдемо, виходячи із моделі, в межах якої вона визначатиме релаксаційні властивості матеріалу пластини) і функцію переміщення $v_1(x;a,b) = L_0 pv(x;a,b)$, де $L_0 = L(0)$, отримаємо

$$v(x,t) = \ell(t)v_1(x;a_0,b_0) + \int_0^t \ell(t-\tau)\frac{d}{d\tau}v_1[x;a(\tau),b(\tau)]d\tau, \qquad (6)$$

тут $a_0 = a(0), b_0 = b(0)$. Координати a(t), b(t) кінців тріщини як функції часу визначимо з системи рівнянь

$$v(a(t), t) = v^*,$$

 $v(b(t), t) = v^*.$ (7)

Далі побудуємо метод чисельного розв'язання системи (7).

Розв'язання системи рівнянь докритичного росту колінеарних тріщин. Умовно розділимо процес докритичного зростання колінеарних тріщин на декілька етапів.

Інкубаційний період росту колінеарних тріщин обмежимо моментом початку зростання довжини тріщин. Виходячи з того, що пружне вертикальне переміщення в лівому кінці тріщини перевищує переміщення в правому кінці, тривалість t_0 інкубаційного періоду визначимо з умови досягнення переміщенням в лівому кінці критичного значення. Зауважуючи, що $a(\tau) = a_0$ і $b(\tau) = b_0$ при $\tau \le t_0$ і функція v_1 у виразі (6) не залежить від часу, перепишемо цей вираз для в'язкопружного розкриття:

$$v(x,t) = \ell(t)v_1(x;a_0,b_0) + \int_{t_0}^t \ell(t-\tau)\frac{d}{d\tau}v_1[x;a(\tau),b(\tau)]d\tau.$$
(8)

Прирівнюючи переміщення $v(a_0, t_0)$ до критичного значення, отримаємо рівняння для визначення тривалості інкубаційного періоду

$$\ell(t_0)v_1(a_0;a_0,b_0) = v^*.$$
(9)

За час t_0 переміщення в правому кінці досягне величини $\ell(t_0)v_1(b_0;a_0,b_0)$, яка не перевищить критичного значення v^* . Починаючи з моменту часу t_0 , довжина тріщини збільшується, внутрішні кінці починають зближуватись, ініціюючи *злиття*.

Далі розглянемо метод чисельного визначення залежностей a(t) та b(t) із системи рівнянь (7).

Розіб'ємо відрізок на продовженні тріщини від точки a_0 до точки a^* на n+1 відрізків $a^* < a_n < a_{n-1} < \ldots < a_1 < a_0$. Будемо послідовно знаходити час проходження тріщиною границь утворених відрізків. Точку a^* визначимо з умови досягнення в ній пружним переміщенням значення v^* при початкових значеннях положення кінців тріщини. При наближенні лівого кінця тріщини до a^* зростає швидкість злиття da/dt. Тому доцільно брати довжину (i+1)-го інтервалу розбиття (a_{i+1},a_i) трохи більшою від довжини i-го інтервалу (a_i,a_{i-1}). Для наведених нижче розв'язків вузли розбиття було вибрано у такий спосіб:

$$a_i = a_0 - (a_0 - a^*) \frac{q^i - 1}{q^{n+1} - 1}, \qquad i = 1, 2, \dots, n ,$$
(10)

тобто довжину *i*-го (*i* = 2,3,...,*n*) інтервалу вибираємо в *q* раз більшою від довжини попереднього, (*i* – 1) -го, інтервалу. Зазначимо, що при розповсюдженні тріщини в обидві сторони значення a^* , вибране для початкових значень положення кінців тріщини, буде зміщуватися в бік тріщини. Однак повторно положення вузлів розбиття при злитті не обчислюємо. Швидкість злиття зростає з часом і відрізки, близькі до a^* , тріщина проходить за проміжки часу значно менші від часу проходження початкових інтервалів. Із цієї ж причини нехтуємо внеском у загальний час поширення проходження тріщиною близьких до a^* відрізків так само, як і часом зникнення перемички між тріщинами.

До досягнення переміщенням у правому кінці тріщини критичного значення час t_i проходження тріщиною вузла розбиття a_i будемо визначати з першого рівняння системи (7) при $b(t_i) = b_i = b_0$: $v(a_i, t_i) = v^*$.

У межах кожного часового інтервалу (t_{i-1}, t_i) шукаємо розв'язок a(t) у формі лінійної або показникової функції, яка задовольняє умови $a(t_{i-1}) = a_{i-1}$, $a(t_i) = a_i$.

Зауважимо, що при $a_i < {\rm c}_0$ перший доданок у виразі (8) зникає, а також маємо, що

 $v(a_i; a(\tau), b_0) = 0, \qquad \tau < t',$

де t' задовольняє рівняння $c(t') = a_i$, і інтегрування в (8) можна проводити не від t_0 , а від t', або, щоб не розв'язувати зазначене рівняння, — від найближчого до t' часу проходження t_j вузла розбиття такого, що $t_j < t'$. Вибір t_j проілюструємо за допомогою рис. 2. При визначенні t_1 і t_2 інтегрування в (8) проводимо від t_0 , оскільки в точках $x = a_1$ і $x = a_2$ переміщення берегів відбувається ще до завершення інкубаційного періоду. При визначенні t_3 , оскільки при $a_3 < c_0$ перший доданок в (8) зникає, а інтегрування все одно проводимо від t_0 , щоб не розв'язувати рівняння $c(t') = a_3$, при визначенні t_4 перший доданок в (8) зникає, інтегрування виконуємо від t_1 .

Якщо визначено t_n для останнього вузла розбиття за a, то номер вузла, що відповідає початку етапу зникнення перемички, $n_{\rm co} = n$ (« со » – скорочено від англ. «coalescence»), час злиття $t_{\rm co} = t_{n_{\rm co}}$. Відповідне положення лівого кінця тріщини $a_{\rm co} = a_{n_{\rm co}}$. Якщо при визначенні t_i не виконується умова $v(a_i, t_{i-1}) < v^*$, то номер вузла, що відповідає початку етапу зникнення перемички, $n_{\rm co} = i - 1$. Тут слід зазначити наступне. Часом проходження лівим кінцем відстані від $x = a_{\rm co}$ до x = 0 будемо нехтувати. Тому відрізняємо величини в'язкопружного переміщення $v(x, t_{\rm co})$ при $a = a_{\rm co}$ і a = 0. У першому випадку маємо ще дві тріщини, в другому – одну.

Визначивши час проходження лівим кінцем тріщини *i*-го вузла розбиття, t_i , перевіряємо, чи залишилося переміщення в правому кінці тріцини меншим від критичного значення для знайденого t_i . Якщо $v(b_0, t_i) < v^*$, то переходимо до визначення t_{i+1} . Якщо переміщення в правому кінці досягло критичного значення, то тим самим ініціюється зростання тріщин у зовнішні сторони. Позначимо відповідний момент часу через t_{b0} .

Якщо при $a = a_{co}$ виконується умова $v(b_0, t_{co}) < v^*$, то малий за часом протікання процес зникнення перемички між тріщинами ініціюється раніше від моменту t_{b0} . Такий варіант поширення двох колінеарних тріщин можливий лише при досить близькому початковому розташуванні тріщин. При злитті утвориться тріщина, довжина якої більш ніж у два рази є більшою від двох тріщин, що зливаються (довжини двох тріщин плюс довжина перемички). До моменту закінчення злиття переміщення в правому кінці вже може перевищити критичне значення. При злитті тріщин до моменту ініціювання росту в зовнішні сторони виконання умови $v(b_0, t_{co}) < v^*$ при a = 0 вимагає знаходження t_{b0} з відповідного рівняння $v(b_0, t_{b0}) = v^*$. Якщо ж $v(b_0, t_{co}) > v^*$ при a = 0, то покладаємо $t_{b0} = t_{co}$.

Коли при $b = b_0$ після знаходження t_i з рівняння $v(a_i, t_i) = v^*$ ліва частина другого рівняння системи перевищує праву, $v(b_0, t_i) > v^*$, визначене значення t_i може бути використане як початкове наближення для знаходження часу початку росту тріщини вправо. Система для визначення t_{b0} і a_{b0} (a_{b0} – координата лівого кінця тріщини в момент часу t_{b0}) має вигляд

$v(a_{b0};t_{b0}) = v^*$	при	$a = a_{b0}$,
$v(b_0;t_{b0}) = v^*$	при	$b = b_0$.

Якщо час злиття, t_{co} ще не визначено, після моменту часу t_{b0} почнемо дослідження росту тріщини в обидва боки. У цьому випадку час проходження i-го вузла розбиття за a і відповідне цьому моменту часу положення правого кінця тріщини b_i знайдемо із системи рівнянь

$$v(a_i, t_i) = v^*,$$

$$v(b_i, t_i) = v^*.$$
(11)

Таким же чином, як і при $b(t) = b_0$, шукаємо час t_i проходження лівим кінцем тріщини точки a_i до визначення часу злиття тріщин. Розв'язок a(t) шукаємо у формі лінійної або показникової функції, яка задовольняє умови $a(t_{i-1}) = a_{i-1}$, $a(t_i) = a_i$. Залежність b(t) шукаємо в аналогічній формі. Як і при дослідженні розповсюдження тріщин лише назустріч одна одній, зазначимо, що при $a_i < c_0$:

$$v[a_i; a(\tau), b(\tau)] = 0, \qquad \tau < t'$$

де t' задовольняє рівняння $c(t') = a_i$, і інтегрування в першому рівнянні системи (11) можна проводити не від нуля, а від t', або, щоб не розв'язувати зазначене рівняння, — від найближчого до t' часу проходження t_j вузла розбиття так, щоб $t_i < t'$. При $b_i > d_0$ виконується

$$v[b_i; a(\tau), b(\tau)] = 0, \qquad \tau < t$$

де t' задовольняє рівняння $d(t') = b_i$, і інтегрування в другому рівнянні системи (11) можна проводити не від нуля, а від t', або, щоб не розв'язувати зазначене рівняння, — від найближчого до t' часу проходження t_j вузла розбиття b_i , такого, щоб виконувалася нерівність $t_i < t'$.

Якщо визначено t_n для останнього вузла розбиття за a, тоді номер вузла, що відповідає початку етапу зникнення перемички, $n_{co} = n$. Якщо при визначенні t_i не виконується умова $v(a_i, t_{i-1}) < v^*$ (при $b_i = b_{i-1}$), то номер вузла, що відповідає початку етапу зникнення перемички, $n_{co} = i - 1$.

Після закінчення процесу злиття маємо одну тріщину довжиною $2b_{n_{co}}$. Переміщення в кінцях об'єднаної тріщини тепер однакові й можуть перевищувати значення критичного переміщення v^* .

Для знаходження закону зміни з часом координат кінця об'єднаної тріщини, b(t), виконаємо розбиття відрізка на продовженні тріщини на m+1 інтервалів, аналогічно, як це було зроблено для дослідження процесу злиття:

$$b_i = b_{co} + (b^* - b_{co}) \frac{q^i - 1}{q^{m+1} - 1}, \quad i = n_{co} + 1, \ n_{co} + 2, \ \dots, \ n_{co} + m,$$

при цьому $a_i = 0$ для зазначених i, а точку b^* визначаємо з умови досягнення в ній пружним переміщенням $v(b^*;0,b^*)$ значення v^* .

Час проходження i-го вузла розбиття за b, t_i , будемо послідовно знаходити з рівняння $v(b_i, t_i) = v^*$. У випадку достатньої кількості вузлів 66 розбиття може виявитися, що для початкових значень i переміщення $v(b_i, t_{i-1}) > v^*$. Це пояснюється поширенням тріщин у зовнішні сторони при зникненні перемички. У цьому випадку вилучаємо відповідні таким почат-ковим номерам i вузли розбиття за b.

4. Чисельні розв'язки задачі про поширення і злиття двох колінеарних тріщин. Проведемо аналіз часової залежності координат кінців тріщини для деяких значень параметрів задачі. Геометричним параметром вважаємо початкове положення лівого кінця тріщини a_0 . Початкову довжину тріщини покладаємо рівною одиниці, таким чином, початковим положенням правого кінця є $b_0 = a_0 + 1$. Силовий параметр і параметри тріщиностійкості матеріалу пластини об'єднаємо в параметри моделі ρ_2 і k_δ . Перший із зазначених параметрів дорівнює відношенню прикладених до берегів зони нелінійних деформацій напружень σ_0 (у рамках використаної моделі) до рівня інтенсивності зовнішнього навантаження p (вираз (4)). Розв'язок отримаємо для значень параметра $6 \le \rho_2 \le 10$.

Далі введемо параметр, що описує рівень критичного розкриття в вершині тріщини. Цей другий із зазначених параметрів характеризує рівень критичного розкриття тріщини в пластині з матеріалу з в'язкопружними властивостями. Для задачі про зростання однієї тріщини одиничної довжини визначимо розкриття у вершинах тріщини. У позначеннях цієї роботи в обох кінцях воно буде дорівнювати величині L(t)pv(0.5; 0, 0.5), яка залежить

від параметра ρ_2 . Обчислимо

$$v_{\min} = \min_{t,\rho_2} \{\ell(t)v(0.5;0,0.5)\}, \qquad v_{\max} = \max_{t,\rho_2} \{\ell(t)v(0.5;0,0.5)\}$$

Розглядатимемо рівень критичних переміщень $v^* = v_1^*/(L_0 p)$, де v_1^* визначається рівнем параметра k_δ таким співвідношенням:

 $\lg v_1^* = \lg v_{\min} + k_{\delta} (\lg v_{\max} - \lg v_{\min}),$

так, щоб при $0 < k_{\delta} < 1$ тріщина обов'язково почала докритичне зростання.

Виберемо реологічну модель, в рамках якої будуватимемо чисельні розв'язки.

Зміну з часом модуля Юнга матеріалу пластини описуватимемо виразом [5]

$$E(t) = E_{\infty} + \sum_{i} \tilde{a}_{i} E_{\delta,1}(-\tilde{b}_{i} t^{\delta}), \qquad (12)$$

де E_∞ — довготривале значення механічної характеристики, а її миттєве значення $E_0=E_\infty+\sum_i \tilde{a}_i$,

$$E_{\delta,\gamma}(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(\delta n + \gamma)}$$
(13)

– функція Міттаґ-Леффлера; Γ – ґамма-функція Ейлера. При δ = 1 і γ =
 = 1 функція (13) перетворюється на експоненту.

Для якісного дослідження при врахуванні релаксаційних властивостей матеріалу будемо використовувати лише один доданок у (12). У цьому випадку модуль (12), який входить до виразу для пружного розв'язку (2) в області зміни часу подамо у вигляді

$$E(t) = E_{\infty} + (E_0 - E_{\infty})E_{\delta,1}(-\tilde{b}t^{\delta}).$$
(14)

Для побудови залежності від часу вертикального переміщення на лінії розташування тріщин скористаємося принципом пружно-в'язкопружної аналогії [4], замінюючи залежну від часу характеристику релаксації (14) відповідною перетвореною величиною

$$\tilde{E}(s) = E_{\infty} + (E_0 - E_{\infty}) \frac{s^{\delta}}{s^{\delta} + \tilde{b}},$$

де $\tilde{E}(s) = sL\{E(t)\}$ — перетворення Лапласа — Карсона функції часу E(t); s — параметр перетворення. Тут використано таку властивість функції Міттаґ-Леффлера:

$$L\{t^{\gamma-1}E_{\delta,\gamma}(-\tilde{b}t^{\delta})\} = \frac{s^{\delta-\gamma}}{s^{\delta}+\tilde{b}}.$$
(15)

Знайдемо зображення Лапласа – Карсона функції $\ell(t) = E_0/E(t)$:

$$\tilde{\ell}(s) = \frac{E_0}{\tilde{E}(s)} = \left(x^{-1} + (1 - x^{-1})\frac{s^{\delta}}{s^{\delta} + \tilde{b}}\right)^{-1} = x + (1 - x)\frac{s^{\delta}}{s^{\delta} + \beta},$$
(16)

де $x = E_0/E_\infty$ і $\beta = \tilde{b}/x$. Тоді, використовуючи (15), в області зміни часу отримаємо

$$\ell(t) = x + (1-x)E_{\delta,1}(-\beta t^{\delta}).$$

Всі чисельні розв'язки будемо знаходити для матеріалу пластини з такими параметрами моделі:

$$x = 100,$$
 $\delta = 0.5,$ $\beta = 0.1 \,\mathrm{e}^{-\delta}.$

На рис. 3 наведено кінетичні криві зростання тріщин при $\rho_2 = 8$ і початковому положенню лівого кінця тріщини $a_0 = 0.5$ (рис. 3a), $a_0 = 0.3$ (рис. 36), $a_0 = 0.1$ (рис. 3e) і $a_0 = 0.06$ (рис. 3r). Криві 1–3 відповідають значенням $k_{\delta} = 0.3, 0.5, 0.7$.

На рис. 4 наведено залежності характерних моментів часу t_0 (штрихпунктирна крива), t_{b0} (штрихова крива), t_{co} (пунктирна крива) та t_{tot} (суцільна крива) від початкового взаємного розташування двох одиничних тріщин.

В табл. 1 для зазначених комбінацій параметрів задачі наведено тривалості інкубаційного періоду t_0 , час злиття тріщин $t_{\rm co}$, час початку розповсюдження тріщин у зовнішні сторони $t_{\rm b0}$ і загальний час докритичного зростання тріщин $t_{\rm tot}$ в годинах.

Аналізуючи результати, наведені в табл. 1 та на рис. 3, рис. 4, зауважимо наступне. Для високих рівнів зовнішнього навантаження (малих ρ_2) і малих початкових відстанях між тріщинами (малих a_0) момент часу злиття може бути меншим від моменту часу початку розповсюдження тріщин у зовнішні сторони, тобто тріщини зливаються до початку зростання у зовнішні сторони. Такий режим поширення та злиття тріщин спостерігали при значеннях $a_0 = 0.06$, $\rho_2 = 6$, $k_{\delta} = 0.3, 0.5, 0.7$ і при $a_0 = 0.07$, $\rho_2 = 6$, $k_{\delta} = 0.3$.

При збільшенні початкової відстані між тріщинами момент часу початку розповсюдження у зовнішні сторони наближається до тривалості інкубаційного періоду (зближення штрихових і нижніх суцільних кривих), а момент часу злиття тріщин – до тривалості усього докритичного зростання (зближення пунктирних кривих і верхніх суцільних кривих). Таким чином, при достатньому початковому віддаленні двох колінеарних кожна з тріщин буде зростати в обидві сторони, причому момент злиття буде відповідати закінченню докритичного розповсюдження колінеарних тріщин або початку динамічного руйнування тіла з тріщинами.

Таблиця 1

ρ_2		6				8				10			
a_0	k_{δ}	t_0	$t_{ m co}$	t_{b0}	$t_{ m tot}$	t_0	$t_{ m co}$	t_{b0}	$t_{ m tot}$	t_0	$t_{ m co}$	t_{b0}	$t_{ m tot}$
0.06	0.3	0.002	0.002	0.009	0.120	0.026	0.056	0.056	1.160	0.065	0.261	0.261	4.868
	0.5	0.081	0.084	0.196	5.104	0.324	0.844	0.844	22.57	0.625	2.911	2.158	67.52
	0.7	0.745	0.873	1.634	53.66	2.436	6.743	6.743	201.6	4.517	22.14	15.90	557.6
0.07	0.3	0.008	0.009	0.012	0.116	0.037	0.108	0.108	1.150	0.084	0.421	0.296	4.829
	0.5	0.155	0.233	0.233	5.003	0.409	1.450	1.261	22.46	0.764	4.656	2.281	67.36
	0.7	1.270	2.108	2.108	52.79	3.022	11.44	9.144	200.7	5.488	34.81	16.84	556.0
	0.3	0.012	0.019	0.019	0.114	0.047	0.170	0.158	1.161	0.102	0.653	0.312	4.867
0.08	0.5	0.200	0.406	0.406	4.948	0.489	2.244	1.339	22.56	0.895	6.671	2.371	67.45
	0.7	1.582	3.529	3.529	52.34	3.574	16.98	9.669	201.2	6.420	49.74	17.55	556.7
	0.3	0.017	0.034	0.034	0.121	0.057	0.270	0.169	1.200	0.120	0.925	0.323	4.959
0.09	0.5	0.241	0.645	0.624	4.993	0.565	3.117	1.393	22.78	1.020	9.032	2.443	67.95
	0.7	1.865	5.308	4.621	52.63	4.097	23.76	10.05	202.6	7.312	68.38	18.15	561.5
	0.3	0.021	0.053	0.053	0.132	0.067	0.358	0.177	1.265	0.136	1.237	0.331	5.095
0.1	0.5	0.279	0.884	0.667	5.074	0.636	4.101	1.436	23.11	1.137	11.71	2.494	68.81
	0.7	2.126	7.433	4.859	53.30	4.592	31.08	10.36	204.9	8.163	88.92	18.56	568.7
	0.3	0.056	0.412	0.092	0.445	0.140	2.032	0.216	2.528	0.264	6.165	0.394	8.577
0.2	0.5	0.554	4.986	0.822	7.780	1.164	18.93	1.692	32.31	2.021	51.41	2.918	92.64
	0.7	4.026	38.69	5.908	72.26	8.355	143.3	12.28	272.8	14.81	391.8	22.03	752.2
	0.3	0.077	0.911	0.102	0.919	0.185	4.165	0.236	4.414	0.340	12.35	0.427	13.78
0.3	0.5	0.715	9.992	0.895	11.84	1.475	37.00	1.829	46.30	2.546	100.1	3.147	129.7
	0.7	5.146	76.83	6.421	101.4	10.65	279.2	13.33	376.2	18.98	770.2	23.95	1042
0.4	0.3	0.091	1.388	0.109	1.389	0.213	6.155	0.249	6.270	0.388	18.27	0.449	19.09
	0.5	0.816	14.61	0.942	15.82	1.672	54.21	1.919	60.73	2.879	146.7	3.299	168.1
	0.7	5.858	112.4	6.754	130.7	12.13	409.2	14.02	482.5	21.71	1135	25.24	1342
0.5	0.3	0.101	1.806	0.113	1.806	0.232	7.965	0.258	8.011	0.421	23.56	0.465	24.00
	0.5	0.884	18.91	0.975	19.68	1.804	70.00	1.983	74.55	3.102	187.5	3.407	203.3
	0.7	6.338	144.4	6.990	158.1	13.13	526.7	14.52	582.7	23.58	1456	26.17	1617

5. До питання збіжності запропонованого методу. При формуванні вузлів розбиття на відрізку між тріщинами у виразі (10) було введено два параметри: n – кількість вузлів розбиття та q – параметр геометричної прогресії. Продемонструємо збіжність методу шляхом визначення часу злиття $t_{\rm co}$ для різних n. Відповідні чисельні результати ілюструє табл. 2.

$a_0 = 0.5$		$a_0 = 0.4$		$a_0 = 0.3$		$a_0 = 0.2$		$a_0 = 0.1$	
n	$t_{ m co}$								
14	70.00	12	54.21	10	37.00	8	18.93	6	4.10
19	71.09	16	55.21	13	37.67	11	19.43	8	4.18
24	71.69	20	56.46	16	38.30	12	19.59	9	4.22
28	71.97	24	56.80	19	39.11	14	19.83	10	4.25
33	72.15	27	56.96	21	39.25	16	20.28	Ι	Ι

Таблиця 2

Розв'язки в табл. 2 отримано для параметрів моделі $\rho_2=8$ та $k_\delta=0.5$ і параметра розбиття q=1.15 .

6. Висновки. Запропоновано модель злиття двох однакових за довжиною тріщин у в'язкопружному ізотропному матеріалі. Наведено визначальні рівняння розвитку тріщин та схему чисельного розв'язання на кожному з етапів розвитку системи тріщин. Наведені розрахунки демонструють якісні характеристики процесу руйнування і збіжність запропонованого методу.

Описані у роботі підходи надають змогу розв'язувати задачі щодо злиття тріщин для анізотропних в'язкопружних матеріалів та у задачі щодо злиття тріщин різної довжини.

- 1. Витвицкий П. М. Полосы скольжения при растяжении тонких пластин с прямолинейными разрезами // Концентрация напряжений. Вып. 1. Киев: Наук. думка, 1965. С. 78–85.
- 2. *Каминский А. А.* Разрушение вязкоупругих тел с трещинами. Киев: Наук. думка, 1990. 310 с.
- Камінський А. О., Селіванов М. Ф., Чорноіван Ю. О. Дослідження переміщення берегів двох колінеарних тріщин рівної довжини // Доп. НАН України. – 2011. – № 11. – С. 70–75.
- 4. Кристенсен Р. М. Введение в механику композитов. Москва: Мир, 1982. 336 с.
- 5. *Работнов Ю. Н.* Элементы наследственной механики твердых тел. Москва: Наука, 1977. 384 с.
- Collins R. A., Cartwright D. J. An analytical solution for two equal-length collinear strip yield cracks // Eng. Fract. Mech. - 2001. - 68, No. 7. - P. 915-924.
- Nishimura T. Strip yield analysis of two collinear unequal cracks in an infinite sheet // Eng. Fract. Mech. - 2002. - 69, No. 11. - P. 1173-1191.
- Theocaris P. S. Dugdale model for two collinear unequal cracks // Eng. Fract. Mech. - 1983. - 18, No. 3. - P. 545-559.
- Yoon-Suk Chang, Nam-Su Huh, Young-Jin Kim, Jin-Ho Lee, Young-Hwan Choi. Coalescence evaluation of collinear axial through-wall cracks in steam generator tubes // Nucl. Eng. Design. - 2007. - 237, No. 12-13. - P. 1460-1467.
- Xu W., Wu X. R., Wang H. Weight functions and strip yield solution for two equallength collinear cracks in an infinite sheet // Eng. Fract. Mech. - 2011. - 78, No. 11. - P. 2356-2368.

МОДЕЛЬ РОСТА И СЛИЯНИЯ ДВУХ КОЛЛИНЕАРНЫХ ТРЕЩИН В ВЯЗКОУПРУГОМ ТЕЛЕ

Для плоской задачи линейной вязкоупругости предложена модель распространения и слияния двух коллинеарных трещин. Модель построена в рамках теории докритического роста трещин в вязкоупругой среде. В качестве иллюстрации применения модели получены зависимости координат концов трещины от времени для широкого диапазона параметров модели, среди которых геометрические параметры задачи, интенсивность внешней нагрузки и параметры трещиностойкости.

MODEL OF GROWTH AND COALESCENCE OF TWO CO-LINEAR CRACKS IN VISCOELASTIC BODY

For plane problem of linear viscoelasticity a model of two co-linear cracks growth and coalescence is proposed. The model is based on the theory of subcritical crack growth in viscoelastic media. As an example of the model application the time-dependence of the crack tip positions is determined for a wide range of the model parameters, i.e. geometric parameters, intensity of the external loading and fracture resistance parameters.

Ін-т механіки ім. С. П. Тимошенка НАН України, Київ Одержано 19.09.11