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DEFORMATION OF ORTHOTROPIC COMPOSITES WITH UNIDIRECTIONAL
ELLIPSOIDAL INCLUSIONS UNDER MATRIX MICRODAMAGES

In the present paper a model of deformation of stochastic composites under
microdamaging is developed for the case of orthotropic composite, when the mic-
rodamages are accumulated in the matrix. The composite is treated as an isotropic
matrix strengthened by three-axial ellipsoidal inclusions with orthotropic
symmetry of elastic properties. It is assumed that the loading process leads to
accumulation of damages in the matrix. Fractured microvolumes are modelled by a
system of randomly distributed quasi-spherical pores. The porosity balance
equation and relations for determining the effective elastic modules for the case of
the composite with orthotropic components are taken as the basic relations. The
fracture criterion is assumed to be given as the limit value of the intensity of
average shear stresses occurring in the undamaged part of the material. Basing on
the analytical and numerical approach the algorithm for determination of
nonlinear deformative properties of such a material is constructed. The
nonlinearity of composite deformations is caused by accumulation of the micro
damages in the matrix. Using the numerical solution the nonlinear stress-strain
diagrams for orthotropic composite for the case of biaxial extension are obtained.

1. Introduction. The process of behaviour of composite materials for gi-
ven significant loads represents large theoretical interest and is important for
various applications. Some aspects of mechanic of composite material are con-
sidered in [1, 2, 5].

The determination of the strain-stress state diagram of a material by an
experimental way is rather difficulty, therefore there is necessarily develo-
ping the various theoretical techniques of a research of the problem. The con-
cept that the micro destruction occurs in the weakest micro volumes of a ma-
terial under high loads, which reduces the bearing section of the material and
leads to a redistribution of micro stresses, and hence to nonlinear relationships
between macro stresses and macro deformations is based on the theory of
material damage [3, 4, 6—8, 11]. In the statistical approaches it is used the as-
sumption that the strength of the material is statistically homogeneous and is
a random function of coordinates, the single-point distribution of which is de-
scribed by a Weibull distribution [8, 11—14, 22, 23].

A statistical model of coupled processes of deformation and short-term
micro damages was proposed for homogeneous [16, 17] and composite mate-
rials with isotropic [19, 20] and transversally-isotropic [18] components. It is
based on modeling dispersed micro damages by a system of randomly distri-
buted quasi spherical micro pores, which are empty or are filled with destro-
yed material. The process formation and accumulation of micro damages un-
der loading is based on a failure criterion for micro volume in a Huber — Mi-
ses or in Schleicher — Nadai form and on the porosity balance of destroyed
micro volumes derived from the general properties of distribution function for
the ultimate micro strength. In the present work, it is developed a more gene-
ral model within the same parent ideas, which allows to study the deforma-
tive properties of stochastic composites with isotropic matrix and orthotropic
three axes ellipsoidal inclusions under matrix micro damages.

On the basis of the numerical and analytical approach it is constructed an
algorithm for determination of the nonlinear deformative properties of such a
material. The nonlinearity of composite deformations caused by accumulation
of micro damages in matrix. Investigation of the nonlinear deformative pro-
perties of the composites may be divided in two stages: first, linear effective
elastic properties of the porous composite is determined on the basis of the
stochastic equations of elasticity theory taking into account an accidental cha-
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racter of the distribution of inclusions and micro pores in matrix by using the
method of conditional moments [15], and then using the iterative secant me-
thod it is investigated the nonlinear deformative properties of such a material.
The nonlinear diagrams of the deformation of orthotropic composite are con-
structed for the case of biaxial extension.

2. Mechanical model. Let us consider the representative volume V of a
composite material subjected to uniform mac-

x
ro deformations <8k,>. The composite is the T ’
] |
matrix strengthened by stochastically distri- 0 OO:"O 0. - 000
buted unidirectional three-axes ellipsoids as 0 OOOO" |OO ° o00

shown in Fig. 1. We suppose that the elastic ol 0 0 0 0 0
properties of inclusions material have ortho- 0 a Yo )
tropic symmetry. It is assumed, that the mat- 0 0 00 JO_() °0 0 n
rix is isotropic and weakened by randomly ] 06_0% —
distributed pores of quasi spherical shape.
The effective deformative properties and the ,
stress-strain state of such a composite are Fig. 1

determined on the basis of the stochastic equations of the elasticity theory by
the method of conditional moment functions [15].

Under homogeneous loading, the stresses and strains appearing in the re-
presentative volume will form statistically homogeneous random fields satis-
fying the ergodicity condition. In this case we can replace the operation of the
averaging over a representative volume by the operation of the averaging

X3

over an ensemble of realizations. Then the macroscopic stresses <cij> and

strains <su> of such a material will be related as follows:

<Gij> = kzju (€r) (1)

Here }»ZM is the tensor of effective elastic constants, o g,, are the

i
stresses and strains tensors, and the angular brackets denote the operation of
the averaging over an ensemble of realizations. Assume that the matrix of

such a composite has an initial porosity p,. Then the tensor of effective
elastic modules of composite will be function depending on the elastic modules
of components 7‘%[7 }»[i?}]d (indexes [1] and [2] denote inclusions and matrix,
respectively), on the volume concentration of inclusions ¢; in a matrix and the
shape of inclusions characterized by parameters ?2 and ?3 [10] as:

}‘Z‘kﬁ = kl}m(%[” A2 ¢y by, ty), (2)

mnpq’ mnpq’

where
— t — t
t, = 2 t, = t_3 3)
1 1
Here t;, t,, t; are semi axes of ellipsoids in the directions of axes x,,

x,, x, respectively.
The tensor k[j}d are determined in terms of the tensor k?jk[ for the
matrix skeleton and its porosity p,, which characterizes damage, i.e.
2] _ 412] 2
7Lijkl - 7\ijké (kmnpq’ pO)' (4)

The relations derived in [21] are used for calculation of the effective elas-
tic constants of porous material.

Knowing the effective elastic modules and macro deformations of compo-
site, we can determine the matrix deformations by the relations:
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<8k/ |2> = (Ik/pq + C2(<}\‘k/mn> - }\‘;;Imn)(}"['ri]npq)_lj <8PQ> : ()
Here

_ (1] [2] [3] _ 5] (2]
<}\‘k€mn> - Cl}\‘kfmn + C2}\’k/mn’ }\’mnpq - }\’mnpq - }\‘m'ﬂpq ’ (6)

and c¢;, ¢, are the volume concentrations of inclusion and binder in a compo-
site and they are connected by following expression:

c,=1-¢;. (7)
The average matrix stresses <ci].|2> are related to the average matrix

strains <8M |2> as follows:
<Gij |2> = }‘[z?z]c/ (&2 - (8)
Whereas the average matrix skeleton stresses <c?j> are connected with

the average matrix stresses <Gij |2> by equations

(%) = 1= (o) ©)

. . 2
and regarding to Eqns. (1), (5)—(8), the average matrix skeleton stresses <Gij>

can be determined as a function of the macro deformations of composite by
the following relations:

1 " -
<c?j> = 1-— P ?\'[l?lnn (Imnkl + C2<<7\‘mnk2> - 7\‘mnkl)(;\‘Ecgé’]pq) 1) <8pq> . (10)

Let us assume, that the destruction criterion of the skeleton material is
determined by limiting value of intensity of the average tangential stresses in
a not destroyed part of the material [4, 6]:

I =(<Gf,»>’,<0f,»>’j =k, 1D

2<> — deviator of the average over material skeleton stresses, and k,

where <Gi]

— corresponding limiting value, which is a random function of coordinates.
Since it is supposed that the material micro strength is statistical uni-
form, the one-point distribution function F(k,) of a random variable k,

doesn’t depend on coordinates and can be described by the exponential-power
distribution function in a semi-infinite interval, ie., by the Weibull distribu-
tion [11-16, 22, 23]:

Flle.) = 0, k, <k,
(ey) = 1-exp(-n(k, —ky)*), k, > k.

Here k, is the limiting lower value of the intensity of the tangential

(12)

stresses k, averaged over matrix skeleton, at which the fracture occurs in so-

me macro volumes of matrix, k;, n and o are the parameters of the distri-

bution function, which can be selected from the condition of the best appro-
ximation of the strength spread. These parameters are determined by experi-
mentally for each material.

Let the initial (prior to deformation) micro damage of the matrix be cha-

racterized by a porosity p,. Then, according to the property of ergodicity, the
distribution function F(k,) determines the undamaged fraction of matrix ma-

terial where the ultimate micro strength is lower than k,. Therefore, if the
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stresses in the undamaged part of the matrix are equal to <63j>, then the
function F(Ii) determines, according to (10)—(12), the fraction of the destro-

yed micro volumes in the matrix skeleton. The destroyed microvolumes are
modeled by pores and then we can write the equation of balance of destroyed
micro volumes or porosity [16]:

P =Py + FI5)(1~py). (13)
In accordance with the given above Eqns. (1)—(10), the matrix skeleton
stresses <c?j> can be defined as the function of the composite macro strains

<8M>. Substituting (10) into (13), we obtain a system of equations for determi-
nation of the porosity of matrix p, caused by micro destruction, as a function
of macro strains:

p = p((e))- (14)
Then, substituting p for p, into Egns. (2)—(12), we obtain the nonlinear

dependence between the macro stresses <ci].> and the macro strains (g,),

caused by micro destruction. These relations take into account the strength
spread of the material.

3. Effective elastic moduli of composite with orthotropic components.
Based on the above model, let us solve the deformation problem for composite
which is an isotropic matrix strengthened by ellipsoidal orthotropic inclusions

provided that micro damages occur in matrix, ie., p, # 0. For that the prob-

lem on the effective elastic module for such a composite has to be solved and
the relations (2) has to be derived in closed species. The solution was presen-
ted in [10]. The expressions for determination of effective constants are
written down. Passing to matrix designations with super-indices according to
the following scheme:

11-»>1, 2252, 33—->3, 23—>4, 13—->5, 1256,

9 independent constant of the tensor of effective elastic moduli Aj;, Aj,, Aj;,

Myos Mg, Aag, Ays, Ais, Age Of composite under consideration can be calcula-
ted according to:
* 3 3 .
o= () + eI b B, i,i=123, (15)
where
N
qu = (qu - qu}\‘fk) )
41 )\
AL = () + ey e B i i=4,56, 16
i < zz> 1-2"% 1_4Mii}“ii ( )
in here

T [2] [1] c
My = Cihy F ek — Ay,
and summation is not performed over repeating indexes.

The components of tensor M i from (15), (16) are determined in terms of

(3] — 4 (1 [2]
2=l g,

ij

define integrals as follows:
/2

2

My, =~ J [A5snGeSy + Mg (RopSy + A5Sg)Ssu; + Ssuy + Sgug|do,
0

9 /2

My, =+ J [542G6Sz + 255 (1S5 + A538,) + Syuy + Sgug + Syuz|do,
0
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n/2

2
Mg, = P j [7“247“25510 + Ao (A11S5 + M59Sy) + Seuy + Sguy + Sgul]d(P7
0

n/2

) c c ¢
M3 = T .[ [S6 (usrg = A510y) = uy (RS, +1554)] do,
0

/2

2
My = J [S5(ugug = Moyus) = us (AGeS5 + 2445,)] do,
0

/2

2
My, = T .[ [S6 (uguy = Ag5uq) = ug(h35S; +14,S,)] do,
0

/2

2
My, == I [255 (A11S5 + A55819) + Mg (RS + M558, ) + 87 (Rophss —
0

— 2h93hgs) T Sg(M53hgs — 2h55055 ) + 2S5y + Sgug + S4u7]d(p )

/2

2 c c c ¢ ¢ ¢ ¢
My; = T .[ [A5a (A58, + A55S10) + Mg (AT 1Sy + A5pS,) + S5 (A A5, —
0

— 2 5hg ) + Sg(Mgshgs — 2hi3hay) + 2Sguyy + Squg + S3u7] do,

/2

2 c c c c c ¢ ¢’
Mg = T .[ [A5a(A53S5 + A55Sg) + Ags (A, S) + A5385) + S5 (A Ay —
0

=285 ) + S, (RSohSs — 2R50A5, ) + 28w,y + Syug + Ssug|de.  (17)

Here kgj
follows [10]:

AS :{<7”’j>’

(A1), il 2l

if Al <2
ij =

iy

i

and u; and Sj are determined from the relations

_AcAcC cAc
Uy = Agghgg + Agph

_acChcC cnhc _acC AcC c
Uy = hgshge + Aihiy, Uz = Agghgs + Aggh

—n¢C c _nc c _acC c
Uy = Aoz + Ay, Uy = Az + Ags, Ug = My + Agg,

_aC e c 2 c AcC
Ug = Agohgs — Ags™ — 2h55h4

_ cac _achac
Upg = UsUg + Agshgg — Ao,

557
_3¢cnpCc _ayc2 cAc

Uy = Ajyhgy — Ayy" — 2A75h6,
_acChcC c 2 cAc

Ug = Ajjhgy —Ays” — 2h0505,

_ cac _acpeC
Uy = Uyl + ygyhgg — Aoohys,

S, =4, cos® o,

A, -A
Sy = 2 5 L cos? ¢sin? o,
by
S5=_—§cos4(p,
i3
S A -2A,+ Ay sin
T E—4E-2 P,
2 13
[14 3 i
Sy = e sin® @,
2 b3

can be represented by a tensor with constant components as

c
667

_ cac _ac e
Upy = Uyl + Aigyhgs — Agshiy,

A, —3A, +34, - A

2 = —6 Sinﬁ 9,
ty
A, —2A,+ A
4=—3 _42 L cos® gsin® g,
by
A, — A
S =_3—_22(:os2(psin2(p,
t,%t3
A
S =_—icos2(p,
3
A
Sy =—+
10 t36

(18)
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In here
-t -t
t2 = _25 - : ’

b b

where t,, t,, t; are semi axes of ellipsoids in the directions of axes x,, x,,

xq respectlvely and the quantities A , 7=1,...,4, take different values, de-

pending on the sign of the parameter R = h? + qz. These values will be pre-

sent bellow. The parameters h and q are determined as follows:

3b,b, — bs by byb
h = 132 2 q= 23_2234_&7 (19)
9b? 2767 6b>  2b,
where
4 .
=Z( )'a;, b, =3a, —2a, +a;, by =-3a, +a,, (20)
1=
while a;, i =1,...,4, are determined by the formulas:
)\‘C c 7\‘C u
a (Xg5 cos®p + =2 sin (pj (7\‘;17\‘%6 cos*o+ 288 sin*p + —L cos’p sin (pj
ty t 5
}\’C
a, = ?%[ug (kfl cos* ¢ + ?242 sin* (pj (A5 + 205508 )(Xgﬁ cos® ¢ +
3 2
AL KC .9
+ _L; sinz(pj cos® @ — ((AS5)* + 2k§3XZ4)( sin®@+ A, cos (pj sm2(p +
ty t; ty
+ 2hi4M55hee + 2_’;4“'5”6 + A3y cos? ¢ sin? (p},
ty
Mool ASe + AL u
ag = %[( CaASSAGs + AS, Uy ) cos® @ + —33744 i‘; 2578 sin (p]
3 2
Aol A
a, = 38 _464 66 (20)
3

At R=h*+¢*<0 , the quantities A., j=1,...,4, are expressed as fol-
q q o ]

lows:
a’ 1.
A = B s — j=1,2
3 3
1 1 i ol
A, =—|14+— -1y =+ 21
: bl(+4lh|2( ! 1
1=1 1
while
F arctgy a,, a; >0,
a; '
I, = . L o i=1,2,3. (22)
1 1
- n a; <0,
2{-0, |1-y-q,
Here
b b
o, = == + 2signgy|h|v,, o, = = —2sign gy |h| vy,
3b, 3b,
b J
o, = o= - 2sign qy |hlv,, v, = cos(1 arctg R)
3b, 3 |h|
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v, = COS (g - % arctg ﬁ) y V3 = COS (g + § arctg W

d, = (v +0,)(V; +v3), dy= (V] +0,)(V3 —V,), dg=(v; +03)(V3-0y), (23)

At R=h?+¢* >0, we have

n 1 \/——Rj’

A =L(I, -(2a-a), - I,), A, =L(-al, -2°I, +al,),
Ay = L(a®, — a2’l, + (2% - 2a0)];),

A, = bil ~ L(&’I, +2°(2* - 2a)], + (2a2” — 4d’a + 2°a)1,), (24)
where
Lar’ctg«/E, a >0,
L Ja
1= JZ
1 g ltd-a o,
2W-a [1-V-af
b, . 1 1 _3|h|+x/E
a—£+251gnq,¢|h|v, U—E(T"r?j, T—W,
I, = 1 ( 1 1n1+“2(2_a)+2+ 1 arcctgz—_lj
2 ov22\2fz-a 1-y2(z—a)+z z+a J2(z+a) ’
I, = 1 (— 1 1n1+“2(2_a)+2+ 1 arcctgz—_lj (25)
P ov2\ 2fz-a 1-y2(z—a)+2z yz+a 1[2(z+a)’
while

b
L= 1 azﬁ—signq,”iﬂml, z=4ya® +3|h|mj.
1

- bl((lz - 2a0 + 2%) ’
Meanwhile, m; and m, take different values, depending on the sign of
the parameter h, ie.

—at h<0:
m1=%(r+%j, m2=%(r—%j, (26)
—at h>0:
1 1 1 1
mlzg(')"—;j, m2 :E(T"r?). (27)

Knowing the tensor Mij,

effective moduli of the orthotropic composite.
The transcendental equation described by (1)—(13) is solved by iterative
scheme outlined below.

we can use Eqns. (15), (16) to calculate the

e The matrix porosity in the m-th approximation p(”) is connected with
the limiting value of the intensity of the average tangential stresses
over skeleton material in the n-th approximation Icé”), ie. with the
intensity of the average tangential stresses over skeleton in the n-th
approximation Jg(”). At the same time, the intensity of the average

tangential stresses over the matrix skeleton depends according to Eqns.
(5)—(10) on the current matrix porosity in the (n —1)-th approximation

(n-1)
b

approximation k:j(

, on the effective elastic modules of composite in the (n—1)-th
"1 and on the macro strains <£pq>. The effective
elastic modules are the functions of current matrix porosity in the
(n —1)-th approximation p™™ by Eqgns. (2), (4).
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Then, based on the relations (11)—(14) we can write the balance equation
for porosity in the iterative form as

p" ™ = py + (1-p PRV, (28)
where
(n-1
F(k(n_l)) _ 0, an ) < kO’
2 1-exp (—n(ké"fl) —ky)*), k;nfl) > k.
At the same time, in accordance with the Eqns. (2)—(11) the value of

(29)

k" in the (n—1)-th approximation depends on porosity in the (n —1)-th
approximation p("_l) as
-1 2(n-1 2(n-1 * b !
(D = ) _ g2 )(k (=) pin- >,< ”>) , (30)

and according to the relations (2)—(27) the tensor of effective elastic modules
in the (n —1)-th approximation depends on porosity in the (n —1)-th approxi-
mation p™ ™ as
-1 )4 [1] 42 - T 7
AT = IO A e, p Y 8, 1) (31)
Hence, the Eqns. (17)=(31), (2) allow us to determine the effective elas-
tic constants of orthotropic composite with porous matrix in terms of macro
strains:
7»” = lim k (32)
n—>w0

#(n—1)

Tensor of effective elastic module k depends monotonous on porosi-

(n-1)

ty p therefore the limit exists.

Thus, specifying the macro strains in a material and determining its ef-
fective elastic modules from the Eqns. (2), (17)—(31) we can calculate macro
stresses.

4. Numerical results. Using the above method and porosity balance equa-
tions, let us plot, as an example, a nonlinear macro deformation diagram and
analyze the behaviour of the composite with porous isotropic matrix and
spheroid orthotropic inclusions. We will consider the case of uniaxial tension of
composite:

(g);)#0, (€49) =0.01,
with elastic constants of inclusions (topaz) [9]:
A =287GPa, AL =365 GPa, AL =300 GPa,
AL =90GPa, MY =85GPa, Al =128GPa,
Al =110GPa, Al =135GPa, A =133 GPa,
and elastic modules of the matrix (epoxy):
A2 = 3.7 GPa, u? =1.1GPa.

The volume concentration of inclusions, initial porosity of the matrix, and

the shape of inclusions characterized by parameter ¢t ?3 are:

2
c, =04, p, =0, 0.2, 0.4, t,=1, & =2.
The parameters characterizing the distribution function of the strength
scatter of matrix material are:

o=2, n=10°, 2x10%, k, = 0.015 GPa.
Fig. 2—4 show the dependences of (o,;) on (&), (0,,) on (&,) and

<033> on <811> respectively, for various values of p, and n, characterizing
the distribution function of the strength scatter of the matrix material and
without regard of the strength scatter (it is assumed, that variable k, in Eq.

(11) is constant and equal to k).
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(o11), GPa ‘ | (0499, GPa i I
01— k=k e I szl%gs e R
L - n=10° Pt 0.06 - A g
008 |- n=210% _ | n=210 Prah
0.06 N S 0.04
s 0.4 Nl /0.4 B R
004 03 ] TN
0.02 0 L — - -
2 _— S —
0 0.002 0.004 0.006 0.008 (g&;;) 0 0.002 0.004 0.006 0.008 (&;;)
Fig. 2 Fig. 3
The solid lines describe the case (5.9 GPa ‘ ‘
without regard of the strength scatter L =T
of the matrix material, the dotted and e 0 B
dashed lines describe the cases taking 0.06...... n=2-10* -7
into account the strength scatter with r Ay
_ _ 103 _ 0.04 e R
parameters a =2, n=10"and o =2, 0. T
_ 4 . . [ ,.r.f.t.t e
n =2-10", respectively. For various 0.02 0.2 >\ -------
values of matrix porosity, all of the : | _—T =0 =
. . . F f(—"]
three curves coincide until the onset of _’4//"
the damage. The Figures indicate that e e e e
. 0 0.002 0.004 0.006 0.008 (g;;)
the curves corrected for the spread in ;
micro strength, are more smooth, ha- Fig. 4

ving no breaks. Moreover, by varying the parameters n and o for each ma-
terial, it is possible to make the theoretical macro deformation curve fit well
an experimental one. As it is seen from Figures, the curves plotted regardless

of the strength scatter don’t display the effect of the initial porosity p, on

the behaviour of the material after micro cracking sets in. At the same time,
the macro deformation diagrams plotted with regard of the strength scatter

depend strongly on the initial porosity p,.

Thus, we may conclude that the proposed numerical-analytical procedure
based on the methods of conditional moment function and the iterative secant
method allow us to investigate the nonlinear behavior of stochastic anisotropic
composites with a porous matrix depending on elastic properties of compo-
nents, shape and volume concentration of inclusions and matrix porosity.
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OE®OPMALIT OPTOTPOMHUX KOMIMO3UTIB 3 OOHOHAMNPAMITEHUMMW ENINCOIAANBHUMU
BKNIOYEHHAMM NPU MIKPOMOLUKOAXEHHAX MATPULI

Buxaadeno meopito MIKPONOWKOOH(CEHH MAMEPIAAI8 HA OCHOBL OPMOMPONHOL MAMPUYL
1 00HOHAMPAMACHO OPIEHMOBAHUX BOAOKOH, AKI MAIOMb HOPMY MPUOCHUX eaincoidis.
MikpopyuHy8arnHs M00ear0tomscs nopodicHimu nopamu. Kpumepid pylinysanus e mik-
pool’emi nputmaemscs y Popmi I'ybepa—Miseca, de epanuys miyHocmi € 8unadrKosoro
Ppynryiero xoopouram i3 poznodinom Beubyara. Hanpyaceno-deghopmosaruil cman ma
eexmueHi 8aacmusocmi mamepiary 8U3HAUAIOMBCA 3 PIBHAHL MeoPil NpYyxcHocmi 0as
mamepianié Ha OCHO8L OPMOMPONHOL MAMPUYL MA OOHOHANPAMAEHO OPLEHMOBAHUX
MPUOCHUL eaincoidis. 3amuranus PiBHAHD O0eOPMYBAHHA T MIKPONOULKOOHIYBAHOCTNI
30ilicHI0EMbCA HA OCHOB8L PieHAHb baaaHcy nopucmocmi. I106y008aHO HeATHIUHT 3anedrc-
HOCMI CYMICHUX mMpoyeci8 O0e@opMY8aHHs MAKUX MAMePiaris i MIKPONOWKOOHCeHHS
mampuyl 810 maxpodepopmayii.

OE®OPMALIMM OPTOTPOIHbIX KOMMO3UTOB C OAHOHAMPABJIEHHLIMU
aANnunNcoupAnbHbIMU BKITIOYEHUAMW NPU MUKPOMOBPEXAEHUAX MATPULIbI

V3noxceno meoputo MuxponospexicoaemMocmu memepuaro8 Ha OCHO8E OPMOMPONHOU
MAMPUYDBL U OOHOHANPABAEHHBLL B0A0KOH 8 (POpMe MPexrocHbvlx asruncoudos. Muxpo-
pazpyuwerus moleaupyromes nycmouimu nopamu. Kpumepuil paspyweHrus 8 Muxkpo-
o6seme npurumaemcs 8 gopme I'ybepa — Museca, 20e npedea npouHocmu A6aiemcs CAY-
yaunou Pynryueti xoopouram c pacnpedesenuem Betibyara. Hanpsaocenno-0egopmupo-
8aHHOE cocmosiHue U IPdexmusHvle Ce0UCMEE MAMEPUAIL C MUKPONOBPEHCOCHUAMU 8
KOMNOHEHMAX ONPefeasitomcs U3 CMOXACMULECKUX YPABHEHUT Ynpyzocmu 04 mamepu-
@108 H@ OCHOBE OPTMOMPONHOU MAMPUYDLL U OOHOHANPABACHHBLL TPELOCHBLY INAUNCOUI08.
3amvikarue ypasHeHUut 0epoPMUPOBAHUSL U NOBPeHcOaAeMOCTU OCYULLCTNBALLMCA HA OCHO-
8AHUU YPaBHEHUS bararca nopucmocmu. Ilocmpoensl HeauHelHble 3a8UCUMOCTNU COBMECT -
HBLX mpoyeccos OeoPMUPOBAHUSL MAKUL MAMEPUAL08 U TNO8PeHCOeHUSL MAMPUYDLL OM
maxpodegpopmayuli.
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