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IMPACT INDENTATION OF A RIGID BODY INTO AN ELASTIC LAYER.
ANALYTICAL AND NUMERICAL APPROACHES*

A plane contact-impact problem is considered for an elastic layer subjected to in-
dentation of a rigid body moving with a given wvelocity. An exact analytical solu-
tion is obtained in the case of a blunt contour of the indenter shape. Results of the
solution are presented for stresses developed with time in a layer of a finite thick-
ness. Stress pattern under multiple reflections is analyzed. A numerical solution of
the problem is obtained on the basis of the simplified model of the elasticity theory
having a single displacement. The explicit finite difference algorithm is developed
on the basis of the mesh dispersion minimization technique resulting in precise
calculations of discontinuities. Calculated stresses and force of resistance to pres-
sing are presented in the cases of irregular shapes of the indenter contour (re-
ctangle, wedge and their combination).

1. Introduction. Impact interaction of a rigid body with deformable me-
dia and structures is a topical subject of contemporary solid mechanics. Of the
large number of publications devoted to this problem, only the generalizing
works are cited herein. Review [24] presents the state of investigations using
numerical approaches (primarily the method of finite elements). Monograph
[1] is devoted to the development of analytical approaches to the solution of
problems about the action of impact on an elastic medium. A generalizing mo-
nograph in the field of contact interaction [4] and a review [2] reflect the mul-
titude of approaches to the study of a body’s impact interaction with elastic
and liquid media. In the general case the indentation problem is formulated as
a non-stationary mixed initially-boundary problem of theory of elasticity with
an a priori unknown (temporally varying) boundary, which must be determi-
ned in the course of the solution. The problem statement includes:

e equations of dynamic deformation of the impacted solid,

e the motion equation of the indenter;

e the ratio presenting the resistive force (drag) as a function of a prior:

unknown dimensions of the contact zone and surface stresses;

e the equation connecting the contact zone size with the indenter

displacement;

e the corresponding boundary and initial conditions.

* This research was supported by the Center of Advanced Studies

of Mathematics at Ben-Gurion University of the Negev.

The overwhelming majority of publications (at least of those in which
analytical methods are used) are devoted to the problem of impact by rigid or
deformable indenter against a halfspace that precludes the possibility of ana-
lyzing the waves reflected from the boundaries of the impacted solid. Studies
of indenter interaction with solids of finite size are much less represented. Po-
siting such a problem appears topical in the practical aspect as well — in parti-
cular, in view of the wide use of laminate materials in modern aircraft and
shipbuilding. It is noteworthy that scale effect is among the determinant qua-
litative factors for problems of stresses and fracture in impact interaction (see
e.g. [14, 15]): the structure element under impact loading is destroyed by
stresses whose level is formed due to superposition of waves reflected from
boundary surfaces. The classical Hertz theory of collision is known to be appli-
cable in dynamics at large time values, i.e. after the wave processes have fa-
ded in the solid. The Saint — Venant wave theory of rod collision is well deve-
loped only for quasi-onedimensional problems and does not take into account
energy transfer in directions different from the impact direction. It is there-
fore necessary to develop more adequate models and investigation methods
for dynamic processes of indentation.
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The present publication is devoted to the construction of such ap-
proaches. As the object under impact an elastic layer is considered (plane
statement) as the simplest body enabling the study of the character of the
effect of multiply reflected waves on the formation of the stress state. This
paper consists of two parts. In the first part a precise analytical solution is
obtained about non-stationary indentation of a parabolic cylinder (with axis
perpendicular to the problem plane) into the surface of an elastic layer. The
character is determined of the development of stresses resulting from the
superposition of the reflected waves at different physical and mechanical
characteristics of the layer material.

In the second part a numerical solution is obtained on the basis of the so-
called theory of elasticity with a single displacement. This model was introdu-
ced in [16] and used in a set of dynamical problems [5, 18, 19, 21, 22], in which
one displacement predominates. The explicit finite difference algorithms are
used together with the mesh dispersion minimization (MDM) approach, resul-
ting in precise calculations of discontinuities. The MDM, originally created in
[20] for homogeneous hyperbolic problems, then has been upgraded in [8—11,
13, 17] for computation of more complicated processes of wave and fracture
propagation. MDM is based on a generalized concept of the Courant condition
that relates mesh parameters to wave velocity, which reflects properties of
the material at hand. Difference presentation of original differential equations
exhibits some typical domains of influence, and the idea behind MDM is to
properly adjust these domains so as to improve convergence. To this end, pha-
se velocities of high-frequency components of the continuous models have to
be considered, and the mesh to be set so that the propagation velocities indu-
ced by them approximate the former as closely as possible. An important
technical advantage of MDM is that it utilizes the same mesh for both high-
gradient and smoothed solution components. A satisfactory correspondence of
analytical and computer solutions opens the way for using the latter to solve
contact-impact problems, in which the indenter has an irregular contour. Cal-
culation results are presented for dynamic pressing in of an indenter having a
contour with angle points (rectangle, wedge and their combination). The stress
and drag are calculated in dependence on time and the indenter parameters.

2. Problem statement. A rigid indenter at time t = 0 reaches the surface
of elastic layer z =0 and begins

to press into it. The pressing-in M.R
process is specified by the in- 4 | vVg

denter’s velocity V(t) perpen-

X

dicular to the layer’s surface.
The impact velocity is assumed
to be much less than that of the
elastic waves in the layer, while Fig. 1

the penetration depths are in-

significant. This enables the formulation of a linear problem of theory elasti-
city, with the boundary conditions remaining valid for the undisturbed layer
surface. We refer the layer to Cartesian coordinates x,z (0<z< h, —o<x<®),

so that axis x is directed along the free surface and axis y into the layer
(Fig. 1). Introduce dimensionless notations

=% z_z 7 % 5 _Wop M o5 Vo _[K
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(the line above the notations will be omitted below). Here R is the characte-
ristic linear dimension of the indenter, w, is its displacement counted from

the undisturbed surface of the upper layer, V; and M are its movement ve-
locity and mass respectively, ¢, and c, are respectively velocities of longitu-
dinal and shear waves in the layer, vy is the density of the layer material, K

is its uniform compression modulus, A, p are Lame’s constants, u; are com-

ponents of the displacement vector, G, are components of the stress tensor.

The behavior of the elastic medium is described by potentials ® and Y,
which in the case of a plane problem satisfy wave equations
2 2 2 2 2 2
Co.80 10, LLEY Ay, g
ox 0z a” ot ox 0z p* ot
and are connected with displacements and stresses by relationships

G, = (1—2b2)%27‘f+2[32 (ZZT‘I;— g;g’z),
G, = (1—2b2)227§’+2[32 (5627?— g;g’zj,
(222

The initial conditions for wave potentials are zero.
The boundary conditions of the problem are set on the front and back

surfaces z =0 and z = h. The boundary conditions at the layer front surface
z =0 are: equality of layer and indenter displacements normal to the surface
in the contact zone, absence of normal stress c_, outside the contact zone and

of tangential stress o, (i.e. friction between layer and indenter)

ule:O = wO(t)’ z=0, |x| < |J,‘* ,
cYZZ|Z=() = 0’ 2= 07 |J,'| > |J,'* ’
Oucly =0 220 [af20. @

Besides, it is necessary to see that stress o,, in the contact zone should re-
main compressing in the obtained solution:

... >0, || < |x*|. (5)
Normal displacements and shear stresses are zero at the layer back surface
u, =0, ., =0, z=h. (6)

The boundaries of the contact zone will be the intersection points of the in-

denting body contour x"(t) and plane z = 0; if the surface of the moving bo-
dy is set in the space of variables z, x, t by equation z = F(t,x), the indica-

ted points a"(t) will be the roots of equation
F(t,x)=0. (7
System (1)—(7) formulates the problem of indenter and layer interaction
at the given impact velocity.

3. Analytical solution. The formulated problem admits an analytical solu-
tion on the condition that the indenter contour is a sufficiently smooth, gently
changing curve. Let the flatness of the indenter be such that at small times of

interaction boundary point x"(t) under conditions (4) moves with velocity ex-
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ceeding that of the elastic waves. As a result the latter do not emerge on the
free layer surface, and conditions on boundary z = 0 are

ou X
z =H(x -x)V,(t) =V,(t,x), o

— 2 = >
5 0, x>0. (8)

.?CZ|z=O

Here H(-) is the Heaviside unit function. The condition on the back side re-
mains unchanged

=0, c =0. 9)

U, |z:h xz |z:h

The solution to be obtained here, apart from its independent significance,
also serves below to test the numerical algorithm.

To solve problem (2), (8), (9) the Laplace integral transform in time with
parameter s (upper index L) and the Fourier integral transformation with
parameter & (upper index F') are used. In the image space the wave equa-

tions (with account taken of initial conditions) will take the form

24 LF 2 2y LF 2
6CD2 _(s_2+a2)q)LF=0’ 6‘1’2 _(s_2+é2)\{,LF=0’ (10)
0z o oz B
while the boundary conditions will be as
LF _1yLF LF _ LF _ LF _
su |, =5V (88, o] =0, wS| =0 oy| =0 (1)
The general solution of equations (10) takes the following form:
I _Zp ~ Zp I -£8 ~ Zs
D" = A(s,Ee ¢ +A(s, ge” ¥ =Bs,9e P+ Bs, el
o /32 + o2e2 o /32 + pe? 12)

o ’ B '
Here A(s,§), Als, €), B(s, &), B(s, €) are the functions to be determined. By sa-

tisfying boundary conditions (11), the following expression is obtained for the

LF .

image of normal stress o, :

GLF = — OLVOLF(S, é) ° T(S, Fv) ) (13)

zz

where

0
+Ze ¢
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m=0 m=0

_2(m+1) h-z $2 +0~2§2 j

Now function V,(t,x) is to be concretized. Assume that the front surface
of the indenter in plane Ozx is parabolic, while the velocity of its pressing in
is constant and equals some value V,. Then it is easy to see that function
V,(t,x) is the following:

k 1 Sk
V,(t,x) = V,H(kt — %), k=2V,, V(58 =1V, 3 e 45 (15)

The problem thus consists in the conversion of expression (13), with functions
T and V getting the forms of (14) and (15).
For stresses o, on axis z (i.e. we set x =0 in the Fourier image) we

obtain
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oL (s, 2,2 = 0) = —aV, | £ 31/2 [ % ms,pyae. (16)
0
Then we introduce substitution sn =& and denote
Zompy = 2””1% Zonop = % m=0,1,...,0,
R, (t.2) = 4okt + 422 o' +
T (tz)=kt+2Z° a>-Z |4a’kt+4Z2, o +k>,

Ry (t,2) = | 4okt +42% ot + 12,

mpao

Tppa(t,2) = kt +22% 0?7, |40kt + 422 a* + K,

Ry (8,2) = | 4B%kt + 422, Bt + K,

(t,2) = kt +222, oB% — Z, 0 [ 4B%Kt + 422, (B + K7,

mmB

R (t,2) = | 487Kt + 422 (% + 12,

2 2
T,op(t,2) = Kt +222 8% — Z, o [4B%kt + 422 B* + K
Finally, after a series of transformations (omitted here), with the use of
the convolution theorem in particular, we obtain

o

G t,z X
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mpB(‘C,Z)

Formula (17) is obtained, which is a precise analytical expression for
normal stress c_,(t,z) at arbitrary point of the layer on axis z. It consists of

four infinite sums: each m-th item of the first (second) sum represents the
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m -th expansion wave reflected from the front (back) surface of the layer;
each m-th item of the third (fourth) sum represents the m -th shear wave
reflected from the front (back) surface of the layer. Keeping a finite number
of items N in these sums, we obtain the value of stress with account taken of
N reflections, which is the exact solution of the considered problem on the
time interval = < ¢ < M.
o o

Some results obtained with formula (17) are shown in Fig. 2—4. The in-
denter shape is given by expression (15), V, = 0.01, a = 1. To estimate the in-
fluence of shear rigidity on normal stresses in the layer, parameter B is va-
ried. Here and below compression stresses are taken positive.
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Fig. 2 (relatively low shear rigidity B = 0.1) shows how the normal stress

c,, at point z =a =0 changes with time. Dimensionless thicknesses of the

layer are h =0.2,0.4 and 0.6 (the dashed curve corresponds to an infinite
layer). Stress ©_,(0,0) = V; at the initial moment of interaction, once after that
c,,(0,0) decreases with time up to the moment of the first reflected wave

incoming. Then a step-wise shape of o, is realized due to following multiple

reflections. The amplitudes of discontinuities (caused by fronts of reflected
waves) are decreased after each reflection, and average values of o,,(0,0)
increase linearly with the course of time and inversely proportional to the
normal rigidity of the layer or, which is the same, proportional to its thickness
for the same Lame parameters.

The same process can be seen in Fig. 3, where stresses are depicted in the
case of relatively high shear rigidity B =0.5. A similar step-wise shape of

c,,(0,0) is observed in the comparison with the previous case, while the dif-

ference is that significant growth of o,,(0,0) is realized once after the colli-
sion and preserved at the entire time interval. The above-mentioned linear
dependence on time is realized, as well as the dependence of its slope on the
layer thickness.

Normal stresses at three axial points: z = 0 (the front surface), z = h/2

(the layer middle) and z =h (the back surface) are depicted in Fig. 4
corresponding to the layer of relatively median shear rigidity p = 0.3. The
stress gaps are distinctly visible at moments of incoming wave fronts. The
integral qualitative effects remain the same as in the previous cases.

4. Numerical solution. In this section, results of computer simulations are
presented of the problem under consideration for some non-blunted shapes of
the indenter with angle points. Such points are sources of singularity in
stresses arising in the indentation process. To the best of the present authors’
knowledge, closed analytical solutions are absent for the considered impact-
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contact problems, while some asymptotic estimations exist and in the case of a
halfspace can be found, for example, in [3, 6, 7]. As was shown in [7], normal
stresses in the vicinity of the singular point (the punch edge) rise as

__In(®)
z=0 ’ 1— XZ ’
where X is the distance from the punch edge. Note that this square depen-
dence is the same as in the static problem.

As was said above, in numerical formulation of the plane contact-impact
problem we will use a simplified equation obtained from the plane problem of
theory of elasticity by elimination of one of two displacements [16] (due to

corresponding physical-geometrical assumptions). The more accurate formula-
tion is that the following inequalities between stress components are fulfilled:

o..(X,1)] t—> o, (18)

Ou, _Ou, 5 Ou,
5z = ox %= 9V
Ou, _Ou, 5 Ou, 19
e > o 7 O T Y oy (19)

As a result, displacement u_ is eliminated in the considered process of normal
indentation, and the governing equation with respect to the normal displace-
ment u(x,z,t) = u,(x,zt) (similar to the anti-plane one)

SO " 2. "
U=ul +ciu, (20)

is obtained in the case of the modified plane problem.
Boundary conditions are modified now as

u_,

aZ - |x|>x*;

z=0: u="Vy(x,t), |x|<x,;

z=h: u=0.
Because we have a single displacement, shear boundary conditions at z =0
and z =h are not required now. In this simplified formulation neither longi-
tudinal displacement wu, nor stress o, . are determined, while in the shear

stress one of the components is absent. Under some systems of loading the
considered model is in good correspondence with the original theory of elasti-
city. Below we compare the results obtained by this model with the analytical
solution presented in Section 3. We note in advance that model (20) possesses
higher rigidity in comparison with theory of elasticity; it can play the role of
the upper estimate for the former. Note also that partial justification for this
model can be found in the fact that it correctly described the qualitative rela-
tion (18) and its results obtained for a parabolic indenter have a good corres-
pondence to the analytical solution. However, the main reason for its use is
methodological: the explicit algorithm designed below and applied to the mo-
del allows front discontinuities and singular components of the solution to be
calculated without parasite effects of mesh discretization. This point requires
additional explanations.

A lot of computer algorithms are designed to solve similar contact-impact
problems, while the question how to accurate describe wave fronts and high
gradients still remains open. In diverse numerical tools including those used in
so-called commercial hydrocodes (see, for example [12, 23, 24]), artificial visco-
sity is introduced to eliminate parasite oscillations arising in front vicinities
(and fronts are spread together with them). Note that implicit schemes pos-
sessing an infinite influence domain (or dependence domain) are not intended
for description of wave fronts at all. Thus, mesh dispersion, rather than the
approximation problem, is the main obstacle for accurate calculations of con-
tact-impact problems by explicit algorithms. Beginning from [18], the Mesh
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Dispersion Minimization (MDM) algorithms are designed allowing the above-
mentioned mesh effect to be significantly decreased or eliminated altogether.
The latter was successfully realized in diverse 1D theoretical and practical
problems [8—11, 13, 17, 19, 20], while 2D problems, to the best of the present
authors’ knowledge, were calculated without mesh dispersion only using a
mixed numerical-analytical approach, in which one spatial coordinate was
separated to a set of Fourier harmonics [9].

The MDM relates parameters of discrete mesh to wave velocities: the spa-
tial step divided by the corresponding velocity is equal to the time step. To
elucidate the main concept of the MDM, we present below an example of the
simplest 1D wave equation, where such a procedure is completely realized.
Let a semi-infinite straight elastic rod be subjected to a step stress on its end.
Formulation of the problem is the following:

i=cou" (ct =E/p), ESu'(0,t)=H(t);, u(x,0)=1u(x,0)=0, (21)
where E is Young’s modulus, p is the density, S is the cross-section, c,

(below ¢, =1) is the sound velocity in the rod, u' and % are spatial and time
derivatives. Dispersion relation obtained from (21) by Fourier analysis is
c=1, (22)

where c¢ is the phase speed. The solution of (21) is of course dispersionless.
Stresses, for example, are the following:

o(x,t) = Eu'(x,t) = c,H(t —x). (23)
Problem (21) discretized by the explicit scheme is

M _ouF 4w uf T = 82 (uF - 2uf k), 8= At/Ax,

i=u" = uj

Eu'(0,t) = 6, H(t) = u’; =u) +Axc,,
u(x,0) = w(x,00) = u'l=u’=0. (24)

There x =iAx, t = kAt; Ax and At are spatial and temporal steps of the

difference mesh, 7 and k are the coordinates of the current mesh node. The
dispersion relation corresponding to the discrete case is

2 . . qAx
= +_4_ .
c=1 = c=+% tarcsm(é sin ), (25)

where g is the wavelength. It can be seen that phase speed c¢ depends on the
wavelength here: waves do propagate dispersionally.

The dispersion equation (25) has an infinity of modes that relate to arcsin
periodicity. However, if Ax = At (6 =1), dispersion relation (22) and its dis-
crete analog (25) coincide. Thus in this case the discrete solution turned out to
be also dispersionless. Remind that equality 8 =1 is the limiting value of the
Currant stability criterion: 6 < 1. Discrete equation (24) in case d =1 is re-
written as

k+1 _  k
Uy = Uiy

k k-1 0 _ 0 -1 _ 0 _
+u; U, o, uly; =uy;+Axc,, u; =u; =0. (26)

Its solution

* {GO, i<k, @7

c; = .
0, 1>k,

which is analytically obtained by induction, coincides with the D’Alambert

analytical solution (22) in the mesh nodes. So, mesh dispersion is eliminated in

scheme (26). This simple example is at the basis for the MDM technique. The

MDM principle rule — influence domains of continual and discrete equations
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must be as close as possible — preserves in more complicated problems. As to
model (20) possessing two influence domains, 7 = y x4+ y2 =cpt and r =cgt,
it is impossible to obtain the same domains in its discrete analog built by
conventional homogeneous algorithms. However, a special presentation of
discrete derivatives results in an MDM algorithm allowing domain z = c,t to
be superposed in continual and discrete models. This way is presented below.

First, due to the problem symmetry we consider a quarter of the plane.
Similar to the simplest example (24) we denote At, Az and Ax as 3D mesh

steps, t=kAt, z=jAz and x =1iAx, where k=0,...,K, 7=0,...,] and
j=0,..,J, J=h/Az. Integer K and I will be chosen from a condition of

absence of influence of artificial boundary x = IAx on the xzt-domain of
interest. For second derivations from (20) we use following discretizations:

- ) L
u; - (u;'c+1,i - 2”;61 + u?—l,i)@7

W, = W =20+ Ul

uj; = i(“ﬁl,i +2uf; Ul ), (28)

in which the first two are conventional explicit, while the third is written re-
latively a median value U;f , for the three nearest points on the z-axis. As

can be seen, the accuracy level of calculations (~ ((At)2 + (Az)? + (Aac)z)) in the
discrete analog of (20) built with (28) remains the same as in a conventional
case (i.e. in the case U;“z = u;“l ). For a system of closed 1D equations the ap-
proximation similar to (28) was originally introduced in [5]. As far as the
present authors know, such algorithms for 2D spatial problems have not yet

been designed.
The dispersion equation for continual model (19) is

/ 2 2 2 2

o =qcpq. +cq (29)
(o is the frequency, q, and q, are components of the wave vector), while
for its discrete analog with (28) taken into account we have

2
0At J CP 102 quZ CE 22 qux A 2 quZ

sin—— = At sin + sin cos . (30)
2 (A2)2 2 (Ax)2 2 2

If 5, = At/Az =1 is taken, waves of the minimal short length in z -direc-
tion propagate with the maximal speed ¢ =c;. The minimal length including

three mesh nodes is A, = 2Az, while the minimal wave number is q, zznl=

A

z
= nt. Notably short waves form front discontinuities. In a case similar to

the one considered, when front discontinuities propagate along a single
direction, such fronts are to be precisely calculated. The designed scheme is
stable at Az = cpAt independently from Ax.

Below we present a set of results calculated by discrete model (20) with
approximation (28) for indentation of a layer by punches of finite width 2/
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and various contours of the indenter head. First, an indenter with parabolic
contour is considered to compare analytical and numerical solutions. In Fig. 5a

the problem geometry is shown, while in Fig. 5b dependences o, (x,0) vs.
time are depicted at the layer surface z =0 in points x =0, 0.04 and 0.1.
The layer thickness is taken h = 0.2, the punch width is infinite (£ ~ o),
a=1 and B =0.5 — all the parameters are the same as were chosen in the
analytical solution shown in Fig. 3. Steps of the difference mesh are Ax =
= Az = At = 0.002 (recall that the numerical approach determines the average
stress acting on an area with length equal to the spatial step).

The comparison shows a good correspondence of two approaches. The
computer solution (curve for x = 0, Fig 5b) turns out higher by ~2% than that
in the analytical one (curve for h =0.2, Fig 3) at the common time interval.
However, as comparisons show, in cases of low [ this convergence is more
significant and increases if B decreases. This fact can be explained by too
high common rigidity of the simplified model.

G.(x,0) — Fr——— ;
|<—>|2£ a) = Flz=0; h=0.2 ®) P V=t c)//,,
' ' 004l ~o; a=1.0 g {=h=1
p=0.1 =10 s
0.03f 6f—{B=05 | <
F0.04 x=0 " N
' ! 0.02 — : A

h 0.01 A2 2f A
N ’//1//2
z 0 0.2 0.4 t 0 2 4 6 8 t
Fig. 5

Note that in practice, not stresses but the drag is the more required pa-
rameter. The drag shown in Fig 5c — solid line 1 — is normalized by the punch
i={/Ax (kAt)
. 1 60,1(
length: F(kAt) = g v
approached by a straight line 2 once after one-two reflections. Comparison
with the drag obtained in the case of the simplest 1D spring model of the ef-

. As can be seen, the average value of F is

fective rigidity equal to yczzjé/h (straight line 3) shows that an insignificant

divergence is observed in the considered cases. So, in practice the latter very
rough estimate can be used for the drag formed after multiple reflections. In
results presented in Fig 5c¢ and all the figures below we use punch width ¢ as
the length measurement unit, while stresses are normalized by punch velocity
V, . Besides, layer parameters oo =1 and B = 0.5 are taken. We also show re-

sults related to the positive part of the plane, only implying that the same de-
pendencies relate to the negative part due to the symmetry.

The calculation results shown in Fig. 6 are related to indentation of the
plane punch into the semi-infinite layer. The problem geometry is depicted in

the inset. In Fig. 6a dependences of normal stresses ¢,,(0,0), ©,,(0.5£,0) and
drag F vs. time are depicted, while in Fig. 6b dependences o, (x,0) vs. time

are depicted in the contact surfaces z =0 in the vicinity of singular point
x =0.9,0.95, 0.98, 0.99, 1.0. As calculations show, the distribution of stresses in
the edge vicinity approaches (with time) asymptotic dependence (18). Thus,

we can suppose that the simplified model used here is justified within the
field of the taken parameters of the problem.
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Normal stresses in the contact surface z =0 and drag F(t) are depicted
in Fig. 6 (a semi-infinite layer) and Fig. 7 (a finite thickness h =1). Stresses

c,, Vvs. time at several points in the contact surface z =0, x =0,0.5,0.9 and

drag F are shown in Fig. 7a, and stresses in the vicinity of singular point
z=0, x=095,099 1.0 — in Fig. 7b. Influence of the singularity at punch
edge x =/{ results in a significant growth of altitudes with time, while re-
flections intensify this process. A rapid rise of stresses at singular points and
discontinuities at moments of incoming of reflected waves can be seen.
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For plane punch acted onto a semi-infinite layer (h ~ ) in Fig. 8 and 9
distributions of c,, are shown in the layer along axes x (in several z -cross-
sections: z=0, 0.05, 0.1, 0.25,0.5,1, 2, 3,5, 6) and along axes z (in three ver-
tical cross-sections ax =0, 0.5, 1) for some moments of time (t =1, 3, 6). Maxi-

mal amplitudes of stresses reaching in the singular point are shown in upper
left corners.

o(x,2) 6oy = 6.135 6,y = 10.580 Gpay = 15213
4 4
Fo[t=1 / a) F[t=3 b) F[t=6 )
[ = [ - [ z=0
3 z=0 3 z=0 3
[ [ 0.1 [
) [ 0.05 ) [ ) [
F0.25,2 |01 ¥ 05 L =1\ 05
= = -
YIS Ty ; ~N |
: = | T TS
oL ob——1L — :
0.8 0.9 1 11 x 05 0.75 1 1.25 X 0 0.5 1 1.5 x
Fig. 8

Stresses ©,, decrease with their propagation from the source (due to the

wave divergence). In addition, a set of qualitative effects is observed caused
by a complexity of the acting source — the continuous interaction of a con-
stant initial force at the punch base and increasing forces at the vicinity of

punch edges. Stress distribution o,,(x,z;) along the x -direction in various z -

cross-sections of the layer relatively close to the face surface z =0 is qualita-
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tively similar to that observed in z = 0, the difference is that in z = 0 the vi-
cinity of the projection of the singular point x =1 the stress altitude rapidly
decreases (Fig. 8), while its maximum moves from the edge to the punch me-

dian. Along with wave propagation deep into the layer, x -distribution of o,
is continuously spread, the altitude of o,, decreases in the vicinity of cross-

section x =1 and increases with approaching the axis of symmetry x =0.
This process is arrested in a small (decreasing with time) domain behind the
front z =c,t. At the front itself 6., =1, and the influence of punch edges is
absent, except for a small vicinity of the projection of singular point x =1,
where stresses rapidly decrease up to zero. It can been seen, with distribu-
tions in Fig. 9 in mind, that o,, propagation across the layer is similar to a

quasi-stationary process.
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Calculation results related to wedge indentation into a semi-infinite layer
are presented in Fig. 10, ¢ =1 (the problem geometry is shown in the inset in
Fig. 10b). The problem formulation corresponds to the case when the external
loading (normal velocity) appears at the moment ¢t = 0 at point (0,0) and then
moves along the surface z =0 with constant speed. The latter is determined
by the value of the wedge shape. Let ® = tg¢, where ¢ is half of the angle

at the wedge apex, then the speed of the moving loading is V, = .
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Fig. 10
Stresses o, (x,0) and drag F vs. time are depicted for a set of wedge

angles at some points of the contact surface. The problem has three singular
points: x =0,1 and -1. Interaction of stresses radiating from these points

determines the main peculiarities of the wave process. The smaller =, the
higher the contribution of singularity at x =0 (the wedge apex) and the
lesser at x =1 (the wedge edge). A surprising result is a relatively weak
dependence of the drag on ®. As was said above, the reason for it is the
complicated character of interacting stresses at the contact surface.

In Fig. 11 and Fig. 12 analogous results are shown in the case of a
partially truncated wedge of a finite width. The problem geometry can be
seen in Fig. 1la. There are four singular points are: x=+02 and x==%1.
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The stress pattern and drag vs. time are shown in Fig. 11b up to the time
when reflections from the layer back appear. Note that a self-similar part of
the wave process is clearly observed here: the same constant stress amplitude
equal to 0.8667 is revealed in points at the contact surface up to the moment
when the influence appears of waves radiating from singular points.
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In Fig. 12 stresses at some points of the contact surface and drag are

depicted within the time interval including multiple reflections. Significant
influence of wave fronts is preserved at internal points of the contact surface
at the entire shown time interval, while at points close to the edge stress
curves behave as gradually smoothed. The drag, as in the case of the
spherical shape of the indenter head, is approached by the same straight line
(compare dashed curves in this figure and in Fig. 5c).
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YOAPHE BOABINIOBAHHA TBEPOOIO TIA B MPY)>XHUN LLIAP.
AHANITUYHUU | YUCENBbHUM NIAXOOU

Poszasdaemovess naocka KoHmMaxmua 3a0aua OAs MPYHCHO20 wapy, Axull niddaemuves
yOapy meepoum iHOEHMOPOM, WO PYXaemsves 13 3adanoro weudxicmio. ¥ sunadxy 3a-
MYynaenozo tHOeHmMopa 00epHAHO MOYHUIL AHAMIMUYHUL PO038’s30k 3adaui. Pesyavma-
mu Hage0eno 0asi HANPYHCeHHA AK PYHKYIT Yacy 0as wapy cKiHueHHOT moswuru. Ana-
NBYEMDBCA 3MIHA HANPYHCEHHA 8 pe3yavmami bazamoxpamrux 6i06ums xreuasv. Juceab-
HUll Po3e6’a30K Yiel 3adaui OmMPUMAHO HA 6A3T CNPOWEHO20 8APIAHMY MeoPil NPYHIHOC-
mi 3 00HuUM nepemiujeHHaMm. Po38UnYyMO CKIHUeHHOPIZHUYEBUN A120PUMM DPO3PAXYHKIE
HA OCHOBL MEeXHIKU MIHIMI3AYIT YUCeAbHOL Oucnepcii, wo NnidsUWYE MOoUHICMb 06UUC-
Aenb 8 okoal poapusie Pynkyit. Ob6uucaeH] HANPYHCeHHA 1 CUAY ONOPY mpedcmasaero
Onsl KIABKOX HepeeYyaapHUux Popm iHOeHmopa (MPAMOKYMHUK, KAUH T T KOMOTHAYILT).

YOAPHOE BAABIUBAHWE TBEPOOI'O TEJIA B YNPYrU CNown.
AHAITUTUYECKUU N YUCIIEHHBIN NOAXOAbl

Paccmampusaemes naockas xonmakmuas 3a0aua 04 Ynpyz020 CA0s, M008ePHeHHO020
yoapy meepdvim, Osuxcyujumcs ¢ 3a0aHHOU cKopocmwro, uHlenmopom. B cayuae 3sa-
MYNAeHH020 UHOEHMOPA MNOAYHUEHO MOUHOe aHarumuueckoe pewenue. Pesyavmamuoi
npedcmagienvl 04i HANPAKCEHUA KAK PYHKYUU 8PpemeHU Ol CA0S KOHEUHOU MOAUUHDL.
Anaausupyemcs udmeHenUue HANPAHCEHUSL 8 DPe3yabmame MHOZOKPAMHbBLL OMPAHCeHU
8oaH. Hucaennoe peweHue amou 3a0auU MOAYUEHO HA OCHOBE YNPOWEHHOZO0 8aAPUAHMA
meopuu ynpyzocmu ¢ o0HuM nepemeujeruem. Pazsum roneunopasHocmuslil aszopumm
pacuemos, ONUPAOWUUCS HA MEXHUKY MUHUMUSAYUU YUCAeHHOU Oucnepcuu, umo
no8bLIULAEM MOUHOCTIL 8bIUUCAEHUL 8 OKPeCTHOCTU Pa3pbieos PyrKkyull. Buiuucaennvle
HANPAHCEHUSL U CUACL CONPOMUBAEHUS Npedcmasiensb. 0ai HEeCKOAbKUX HepeeysipHbLY
Popm undenmopa (NPAMOY2ZOALHUK, KAUH U UL KOMOUHAYUU).
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