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ANALYSIS OF NON-CLASSICAL FRACTURE PROBLEMS OF PRE-STRESSED
BODIES WITH INTERACTING CRACKS

In this study two types of mon-classical fracture mechanisms are considered, na-
mely, the fracture of cracked bodies with initial (residual) stresses acting along the
crack planes and fracture of solids under compression along parallel cracks. To in-
vestigate mon-axisymmetric and axisymmetric problems for infinite solids conta-
ining two parallel co-axial cracks or a periodical set of co-axial parallel cracks we
use a combined analytical-numerical method in the framework of three-dimensio-
nal linearized mechanics of solids. The analysis involves the representation of
stresses and displacements of the linearized theory wvia harmonic potential func-
tions. With the use of the integral Fourier — Hankel transformations the problems
are reduced to resolving Fredholm integral equations of the second kind. This ap-
proach allows to investigate problems in a unified general form for compressible
and non-compressible homogeneous isotropic or transversally isotropic elastic bo-
dies with an arbitrary structure of the elastic potential, and the material speci-
fication of the model is carried out only at the stage of numerical calculation of
resolving equations obtained in the general form. The effects of initial stresses on
stress intensity factors are analyzed for highly elastic materials and layered com-
posites (modeled as transversally isotropic elastic bodies). The «resonance-like»
effects are found out when compressive initial stresses are reached the values that
correspond to the local loss of material stability in the vicinity of the cracks,
which, according to the combined method mentioned, allows one to determine
critical (limiting) load parameters under compression of the body along the cracks.
The conclusions concerning the dependences of stress intensity factors and critical
(limiting) parameters of compression on geometrical parameters of the problems
are formulated as well as on physical and mechanical characteristics of materials.

1. Introduction. Among the problems of fracture mechanics that need
further research are, in particular, the analysis of the effect of initial (residu-
al) stresses which, in practice, result from the inhomogeneity of linear or
volume deformations in the neighboring regions of the material on the stress-
strain state of cracked bodies and the study of fracture of bodies under com-
pression [18, 24, 35]. Here, of particular interest are the problems in which
initial stresses (or compressive forces) act along the surfaces of the cracks
present in a body. In the terminology proposed in [13, 15, 27], these groups of
problems are classified with the non-classical problems of fracture mechanics.
The point is that within the framework of the linear brittle fracture mecha-
nics based on Griffith — Irwin concept and approaches and their generaliza-
tions [19, 22, 23, 25], it is impossible to take into account the effect of the load
components oriented in parallel to the crack plane on the fracture parameters.
The solution of respective linear elasticity theory problems implies that the
abovementioned load components do not affect stress intensity factors and
crack-opening displacements, so they cannot be taken into account when re-
lying on the classical fracture criteria, namely, the Griffith — Irwin criterion
or critical crack-opening displacement criterion. But this is not consistent with
the results of experiments in which the impact of load components along the
cracks on the fracture parameters was found [32].

In [8, 9], a version of brittle fracture mechanics was proposed for mate-
rials with initial (residual) stresses acting along cracks that was based on
three-dimensional linearized mechanics of solids [26]. In those works, the fun-
damentals of brittle fracture mechanics for initially stressed materials where
initial stresses were much higher as compared to additional stress fields were
elaborated, including formulations and methods of solving two- and three-di-
mensional problems, as well as formulations of a brittle fracture criterion ana-
logous to that of Griffith — Irwin [14]. Solutions were obtained for some clas-
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ses of static and dynamic problems, mainly those concerning isolated cracks in
infinite bodies with initial stresses (brief reviews of these works were presen-
ted in [3, 13, 20, 30]). New mechanical effects (of both quantitative and quali-
tative nature) related to the effect of initial (residual) stresses on stress-strain
states in materials were discovered.

In the works [12, 15] at studying the phenomenon of fracture of solids
compressed along planes of parallel cracks it was proposed to consider the
local loss of material stability in the vicinity of cracks as a failure mechanism.
According to this approach, critical compression parameters can be
determined by solving respective problems on eigenvalues within the
framework of the three-dimensional linearized theory of deformable solids
stability [11, 26]. Reviews of the works relying on this approach were
presented in [10, 21,28, 36].

The very first works in the mechanics of brittle fracture of materials
with initial stresses [8, 9] that investigated planar and spatial problems for an
infinite pre-stressed material with an isolated non-interacting crack found a
new mechanical effect due to the influence of initial stresses on the distribu-
tion of stress and strain fields in the vicinity of crack and, respectively, on the
values of fracture loads. It is shown, in particular, that when initial (residual)
stresses tend to values corresponding to surface instability of a half-plane (for
planar problems) or half-space (for spatial ones), phenomena of «resonance»
nature occur at the crack tip. Those consist in a part of stresses and
displacements determined from the linearized relations quickly tending to
«infinity». Respectively, in the case of a «free» crack in bodies with initial
stresses the values of fracture loads within the framework of the linearized
theory tend to zero when initial (residual) compressive stresses approach the
values corresponding to the surface instability of the half-plane or half-space.

On the other hand, the studies of problems on compression of infinite
materials along an isolated crack, when the fracture mechanism is due to the
local loss of the stability of equilibrium near the crack, discovered a mecha-
nical effect [9, 12] that consists in coinciding the critical loads during compres-
sion along the crack with the load values that realize the surface instability of
the half-plane (for planar problems) or half-space (for spatial ones). Here, the
loss of material stability in the local domain near the crack is of the surface
instability type.

The two abovementioned mechanical effects indicate that both in the
mechanics of brittle fracture of materials with initial stresses acting along
cracks and in the mechanics of material fracture due to compression along
cracks the phenomenon of surface instability of the half-plane or half-space is
of fundamental nature. The situation could be explained by the following
physical considerations. When initial stresses acting along the crack reach the
values corresponding to the surface instability of the half-plane or half-space
a state of neutral equilibrium develops near the crack tip. In this situation a
minor change in the external load is sufficient to upset the neutral equilibri-
um and start the fracture process characterized by the local loss of material
stability in the vicinity of the crack.

Taking into account this physical interpretation, one can assume that ot-
her geometries of crack location in pre-stressed materials will also lead to
similar «resonance» phenomena — ie., when initial compressive stress appro-
aches the values corresponding to the local loss of material stability in respec-
tive problems on body compression along parallel cracks, stresses and displa-
cements in the vicinity of the cracks change in the dramatic, «resonance-like»
manner. One should also emphasize that the common point in analyzing the
two abovementioned groups of problems is the use of allied mathematical
apparatus in the framework of the three-dimensional linearized mechanics of
solids. In this case, problems of fracture mechanics for materials with initial
stresses acting along cracks are inhomogeneous linearized ones and those of
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mechanics of material fracture due to compression along parallel cracks are
homogeneous linearized problems.

In view of these considerations, to ensure a substantial reduction in
complex computations, a better account and correct interpretation of all
mechanical effects, we think it reasonable to carry out a combined
investigation of fracture mechanics problems on solids with initial stresses and
problems on fracture of cracked materials with compression along cracks in
the framework of linearized mechanics of solids. Such a joint approach allows
us to propose a new, simpler and more effective in practical use, method to
determine critical parameters of loading in problems on solids compression
along the cracks which they contain when there is no need for individual
investigation of eigenvalues problems within three-dimensional linearized
stability theory. The parameters mentioned are calculated in solving
respective inhomogeneous relations of the fracture mechanics of materials
with initial stresses as values of initial compressing forces on achieving which
a dramatic «resonance-like» change in stresses and displacements occurs in
the vicinity of cracks [4—7, 29]. It is also evident that in investigating problems
for fracture of materials with initial stresses there is a natural constraint on
the values of initial compressive stresses when they cannot exceed the values
corresponding to the local loss of material stability in the crack vicinity. It
should be noted that the above method is similar to an approach in the theory
of oscillations of mechanical systems. Namely, to determine the natural
frequencies of a system, one can examine forced oscillations with continuous
change of frequency of the external load. In this case, the frequency of the
natural oscillations of the system is determined (or calculated) as the
frequency of the external load, on achieving which a sharp «resonance»
change of the amplitude values occurs and they tend to infinity.

The method proposed allows the investigation of the problems in a
unified form for isotropic and transversally isotropic compressible and
incompressible elastic bodies with the elastic potential of arbitrary structure
both for the theory of large (finite) initial deformations and the theory of
small initial deformations. Specific models of materials (e.g.,, the use of the
elastic potentials of the specific structure) are only applied at the stage of the
numerical analysis of the characteristic equations, solving the integral
equations, etc.

The present work, relying on the aforementioned method, provides
mathematical statements of problems on pre-stressed solids that contain
interacting circular cracks. It solves problems on an infinite solid containing
two parallel coaxial cracks and on a space with the periodical set of coaxial
cracks. The cases of two parallel coaxial cracks and the periodic set of parallel
cracks that allow us to estimate the effect of the mutual interaction of the
cracks on the fracture parameters are the limiting cases for problems
concerning the fracture of materials with an arbitrary finite number of
coaxial parallel cracks.

Some patterns of loading on crack faces are considered. The effects of
initial stresses on stress intensity factors are analyzed for highly elastic
materials and layered composites (modeled in continuum approximation as
transversally isotropic elastic bodies). The critical parameters of the fracture
of solids containing interacting cracks under compression along the cracks are
calculated. The influence of problems’ geometrical parameters as well as
physical and mechanical properties of materials on the critical parameters is
analyzed.

2. Problem formulation. We consider an infinite elastic body with initial
stresses S}, = S), that are applied in the Oy,y, -plane and act along cracks
located in parallel planes y,; = const. This results in uniform initial stress-
strain state
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SgB =0, SY =S89, =const =0, A =const, A=Ay # Ay,

_ 31 -
=A =Dy, §=123. (1)

In Eqgs. (1) and in what follows we use the following notations: y; are
Lagrangian coordinates, which, in the initial state (caused by the initial
stresses) coincide with Cartesian coordinates; S?j are the components of the
symmetric stress tensor measured per unit area in the undeformed state; A i
are elongation (or contraction) ratios along the coordinate axes determined by
the initial stretching (or compressing) stresses Sl] ; Q;j are the components of

the non-symmetric stress tensor measured per unit area of the body in the

initial state and u; are the components of the vector of displacements that

correspond to them.

In the case where additional (with respect to the initial stress and strain
state) forces are applied to the body, perturbations of the stress-strain state
caused by their action are assumed much smaller than the corresponding
values of the initial stress-strain state, which enables us to apply relations of
the linearized theory of elasticity to the solution of the stated problems [11,
26]. In [9, 13] the general solutions of linearized equations of equilibrium for
the uniform initial stress-strain state in Eqgs. (1) are obtained in terms of

potential functions. These solutions depend on the roots m;, and m, of the
governing characteristic equations. In the case of the non-equal roots n; # n,
the solution is given by

y 2O t9) 1095 u =190 +9,) 095
T or r 00’ CR 00 or’

_my a(Pl my a(Pz

Uy = ﬁ 0z, F 822

o “12 02 nol/2 0> -1/2 1 62
@ = Cus {dlnl Graz, 1T G % T L e
Q.. = 1/2 1 +dyn -1/2 1 62 nol/? ol
30 = Caa aeaz1 P 00z, 2T Broz, P8
2
Qég = |: 2(p1+d€ o (P2:|, (2)
822

where (r,0,2z;) are cylindrical coordinates obtained from Cartesian
coordinates Y, i =123; z;=mn,; 172 Yy, and 9;(r,z;), j=123, are harmonic
potential functions. The parameters C,,, n;, j=123, d, and ¢,, i=12,
included in (2) depend on the initial stresses as well as on the material
properties [9, 13].

In what follows, we present a detailed computation in the case where the
roots of the characteristic equation are non-equal. In the case where the roots
are equal, calculations are performed in a similar way.

For the complete formulation of the problems, equations (1) and (2)
should be complemented with boundary conditions. Below we present a
detailed computation for the problem on the fracture of a body with two

parallel co-axial cracks. In the problem on the space containing a periodic set
of parallel co-axial cracks, calculations are performed in a similar way.
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Let us consider two circular cracks with equal radii a, which are located
in parallel planes y, =0 and y; = —2h with centers on the axis Oyy. The

origin of the cylindrical coordinates coincides with the centers of the cracks.
For such cracks location there is a symmetry of geometrical and stress-strain

schemes of the problem with the plane y; = —h. Therefore, the problem on
the space containing two parallel cracks may be formulated in terms of a
problem on the half-space y; > -h with one near-surface crack that is

located in the plane y; =0. Below, we consider separately the boundary

conditions corresponding to opening- and shear-mode cracks.
2.1. Mode I cracks. On the faces of the cracks, we set supplementary
(with respect to the initial stress-strain state) fields of normal tensile stresses

o(r,0) (symmetrical with respect to the plane y; = 0). Considering the upper
half-space y; > —h we have boundary conditions on the crack faces and on

the plane y; = —h:
@y =—o(r,0), @, =0, @ =0,
0<r<a, y;=10, 0<6<2m, (3)
u; =0, Q@ =0, Q =0,
0<r<ow, y,=-h, 0<0<2n. (4)
We conventionally split the half-space y; = —h into two sub-regions, namely,
sub-domain «1», which is a half-space y,; = 0, and sub-domain «2», which is

a layer —h <y, <0, and denote the quantities that correspond to these

domains by superscripts. On the boundary of these sub-domains, outside the
crack, the conditions of continuity of the components of the stress tensor and
the vectors of displacements are satisfied. This requires the following
conditions

2 2 2
W =0, QW=0, Q2=o0,

ys=—h, 0<r<o, 0<6<2m, (5)
uél) — uéZ), u:ﬂl) — u£2), u(@l) — u(QZ),
Yy; =0, a<r<oo, 0<0<2m, (6)

(1) _ '(2) 1) _ () 1) _ n'(2)
Qz3 = Qg7 Qs = Q3.7 QRsy = Qs

y; =0, 0<7r<om, 0<0<2m, (7)
© o), QP -0, QP -0,
Yy; =0, 0<r<a, 0<6<2m. (8)

Moreover, the stresses and displacements in the half-space y; 20 must

vanish for large values of y,. For the problem on compression of a body
containing two parallel crack by forces acting along the cracks planes the
boundary conditions will have the form (5)—(8) with o(r,0) = 0. Using the
representations (2), we can reformulate the boundary conditions (5)—(8) in
terms of the potential functions (pj(r,zi) , 1=1,2,3. For the axisymmetric case

in relations (3)—(8) we should set uy = @5 = 0.
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2.2. Mode II cracks. Similarly, in the case when radial stresses 1(r)
(anti-symmetrical with respect to the plane y; = 0) are specified on the crack
faces, the boundary conditions are (for problem with axisymmetry):

u? =0, QP =0, y,=-h, 0<r<o,

r

1) _ ,,(2) 1 _ ,,(2) _
Uy’ =uy,  u, =u’, Yy;=0, a<r<o,

(2 ’ 2
Q' =@, Q) =@, y; =0, 0<r<w,

QY =0, Q¥ =-1(r), y,=0, 0<r<a. 9)

2.3. Mode III cracks. We consider the axisymmetric case, when tangen-

tial torsion loads t4(r) (anti-symmetrical with respect to the plane y, =0)
are applied to the crack faces. In this case, only components of displacement
vector u, and stress tensor Qée are nonzero and the representations (2) take

the form
0
u, =0, uez%, u; =0,
1/2 62@
Q3 = Q;, =0, Q39 = C44n;/ : (10)

Ordz,

Taking into account the abovementioned splitting of the half-space
y; = —h into two sub-domains, we obtain the boundary conditions for Mode
IIT cracks:

w (r,y,) =0, y,=—h, 0<r<o,

Qé((al)(ryyg):Qég)(T,ys)y y3 =07 0£7‘<OO,

1)

ue (r’y3):u(92)(riy3)7 y3 :0, a<r<o,

Qi (r,y5) = —10(1), y, =0, r<a.

3. Fredholm integral equations. The problems formulated can be
reduced to systems of dual integral equations and then to Fredholm integral
equations of the second kind. Below, we present a detailed computation for
the problem of fracture of a body with two parallel Mode I cracks. In the
cases of other problem formulations, calculations are performed in a similar
way.
3.1. Mode I cracks. Consider a function of the intensity of external loads
on the crack faces o(r,0) in the form of Fourier series in the angular
coordinate 6, assuming for the simplicity of calculations that it is an even
function (when it is an odd function of 0, here and in the further analysis,
cosines should be replaced with sines and vice versa. But in the general case it
is necessary to use the superposition of solutions.):

o(r,0) = Z c™(r)cosnd, (11)
n=0
where the coefficients 6™ (r) have the form
G(O)(T) = %J‘G(T, 0) do, G(”)(T) = %IG(T,G) cosnbdo, n=1,23....
0 0

We also represent the harmonic potential functions (pj(r,zi), 1=12,3, in
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each sub-domain, namely, «1» and «2» , in the form of Fourier series with
respect to the angular coordinate 0 with coefficients in the form of Hankel
integral expansions with respect to the radial coordinate r of the order that
corresponds to the order of the harmonic with respect to the coordinate 0

1) v K Az da
ol (r,e,zl)—ygcosnei[An(k)e IJnO‘T)T’

1) _ - T Az dA
@y (1,0,2,) = HZ:;] cos nb {[ B, (Me ZJnO”")T1

1) _ S T "y dr
P (r,0,2,) —nzz‘:)smne_gcn(k)e AR

o (r,0,2,) = z cos nej [AV (L) ch Mz, +hy) +
n=0 0

oA

(2) A
+ AP (L) sh(z, +h))J, (A1) Tshih

oP(r,0,2,) = > cos nOJ. [BY (M) ch iz, + hy) +
n=0 0

oA

+BP (L) shA(z, +hy )]Jn(M)m ’
2

02 (r,0,2,) = z sin ne‘[ [C (M) ch Mz; + hy) +
n=0 0

oA

(2) A
+CP (M) shi(zy + hy)]J, (A1) Tshih,

(12)
where z, =n;"?y,, h, =hn;'?, i=1,2,3, and A1), BYn), cYVu),
j =1,2, are new arbitrary unknown functions. Note that the representation of
the potential functions in the form of (12) provides regularity conditions for
the stresses and displacements in the case where y,; — .

Then we substitute the representation of the harmonic potential
functions (12) and external load on the faces of the crack (11) into the
boundary conditions (5)—(8). In this case, from conditions (5) and (7), which

are set on the whole plane y,; =const, we obtain six relations for nine
unknown functions

_1 m , doly Ky W
A, = 2 (ko +kcthu) )AL + a0, % (1+cthp,)B,”’,

1 2 2 2
c,=-cV, AP =0, BP=0, c?=o0, (13)

n n

where p, = Ah;,i=1,2, k, = 0,72, ky = €n]? ke =k, —k,.
Using the relations

om ~ o, (\r)
T () = T () 4 T (), 2 30

from (6) and (8) separately for each n th harmonic with respect to the angular

= J, () =T, (),

n+1
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coordinate 6, we get a system of six dual integral equations
j [d,¢,cthu, AV () + dyl,cthu, BV (WA, (Ar) di :—CLG“”(T), r<a,
0 44

[ [ t2d, 40 (1) + ny2d,BY (1) = ng2C (W)]AT,, () dA =0, r<a,
0

[ n,"2d, a0 00 + ;' 2d,BY (1) + ng PP M, () dh =0, 7 <a,
0

[ %7 (r)dh =0, [X,J, ,0r)dd =0, [XJ,()dr=0, r>a,
0 0 0

(14)
where

_ dlgl k2 (1) d2€2 kl
X, _(1—d2€2) = (L+ cth )AL (x)—(1— dlflj (1

+cthp,)BPY (L) — (1 + cth py )CP (),

_ dlgl k2 1) d2£2 kl
X, —(1—d2£2j?(1+cthpl)An (x)—(1— dlﬁljf(H

+ cth ) BP(A) + (1 + cth g )CD ()

X, =d 0, (1+cthp)AV () +dyl,(1+cthp,)BU (), n=1,23,... (15)

In what follows, we assume that n >1 in (14) and (15). The axisymmetric case
n =0 is a specific one because the number of equations and unknown
function for it decreases and therefore it should be considered separately.

Let us solve the system of dual integral equations (14) with the substitu-
tion method [16] for the case when the dual integral equations contain Bessel
functions of different orders. Correspondingly, we choose a solution of the
system of dual integral equations (14) in the form

1/2 a
X, = (g) kg/z{ 90T 1y (1) dt =
/2 o«
=- (gj WE[a[a ™, ) = YA 0] dt,
0
1/2 a
X, - (gj 7\‘1/2J't1/2w(t)‘]n71/2(kt)dt =
0
NI
:(5) A\ { (1), (M) dt

1/2 a
X, = (g) W2 [Pt s (O) dt =
0

1/2 a
- (g) Y 2j a2, p(ha) - gy O] dt,
0

(16)
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where o¢(t), y(t) and o(t) are unknown functions that are continuous as well

as their first derivatives on the segment [0, a], and introduce the notation

o) = [t o(t)], o(t) = %[t"m(t)]. (17)

Without gomg into details and applying a technique similar to [2], we can
reduce system (14) to a system of Fredholm integral equations of the second
kind in the dimensionless form

;( +qu1(§)+ ( )fz O+ _‘-fl MK, (€ ) dn +

1
+2 [ K& man +2 [ KKy mdn =0,
0 0
1( k 1( k 27
E(sk—l—qjma>+§(sk—+q)fz(é)+;jmnm21(a,n)dn+
Ejf(n)ﬂfzz(an ydn +2 jfg(n K3 (E,m)dn =0,
nO
1 1
TS hO2 [ A0, € man + 2 AR EAR
21 /2
;! 3 (K 5(E M) dn =~ aju(asme)de (18)
where
u(@Q)= g EoMad), W) = g [ud), =%, (1- %j :
44
q=n3"", &zaca_l, n=ta, p=ha’, ]‘1(2):(1"1 d [Jc o(x)],
£ =a " at(@), £ =0 L [2"e(@)]. (19)

The kernels of the integral equations (18) are
K,,(&m) = ng" ! {— 2s :—‘f Bun 1S, (zy1) = S, (2] +
+25By [N 1S, (215) = S, (20)] + 2085 [0S, (215) —
-S (223)]} + F%gzn {—s%[Rn(zﬁl,n) -
- R, (2B,,1)] + s[R, (2B,,n) - R, (2B,,1)] +
+q[R,(2B5,M) - R, (2B, 1)]}, ete,,

where
B, =n;*B, =123,

(2[3]')2 +T]2 +§2 (2'3]‘)2 +1+§2
21 = T’ Z9j = T’
S.2) = 1 -D7[@,(2)-2Q,() R, (b,1) = $b(b* + )",

and @, (z) are Legendre functions of the second kind.
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For the axisymmetric case (n =0) we obtain the following solvable
system of Fredholm integral equations of the second kind

m/2
FE) + = j FOVK, (& m) dn + = j K ,(Emdn = 2 [ u(Esin6)do,
0

9(&) + = j FK o, () dn + %{g(nmm@ Wdn =0, (20)

é‘;G(a&)
T Cudyl,

gfn(é,n) = k111 2[31’ n) - kzll(zl}z’ n) )
Wm(i,ﬂ) = kl {[Io (2[3171) - 10 (2BL2a 1)] - 1171[10(2[3141,11) - I() (2[32,11)]} ’
Kzl(i,ﬂ) == k2§[12(2l31,ﬂ) - 12(2[-)’2,7])] ,

Koy (Em)=— ‘:{[k211(2ﬁ1’ 1) — kI, (2B,, 1)] - nil[k211(2ﬁp n) — k1, (2B, 1”l)]} )
(21)

where u(&) = with the kernels

where

p
2en(z* 1)

1 2+1

I,B,n) = 30 , LB, =

2 2 2
L(B,n) = 11([3,11)[4211([3,11) - %} 2= %

3.2. Mode II cracks. For the axisymmetric case we get the following sol-
vable system of Fredholm integral equations of the second kind:

1
&) -~ j FOUKy, (& dn — = j gk, (& M) dn =0,

/2
9(8) - = j Koy (&) dn— = j gK (&M dn=—2¢ j v'(§sin 6)do),
(22)
where v(§) = —Lﬁg and the kernels Ki]. take the form (21).
Cyymy dy

3.3. Mode III cracks. We obtain the solvable Fredholm integral equation
of the second kind

/2
e[ wizsino)ds, wE) =2 (23)
0

Cyymy

1
1 _
@)+ ;{f(n)%’(&,n) dn =

ENES

with the kernel
1 1
K(Em) = 8B az{ - }
L4 + €2 +m?)? -4 (4B2 + &% +1)% — 482
4. Stress intensity factors. Similarly to the classical case [22, 33], we de-

termine the stress intensity factors as coefficients with singularities in the
stress components near the tips of cracks

K; = lim y2n(r —a) Qég(r,O), K, = lim y2n(r —a) Qér(r,O),
r>+a r—>+a
K, = rlir?a V21(r — a) @4(r,0). (24)
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4.1. Two parallel co-axial cracks.

4.1.1. Mode I cracks. From the solution of the system of Fredholm in-
tegral equations of the second kind (18), taking into account expressions (19),
(17), (16), (15), (13), (12), and the representations of the solutions of the
linearized equilibrium equations (2), we can calculate distributions of stresses
and displacements in the material via the potential functions. Let us consider

the values of the components of the stress tensor in the domain y; 20, r>a
(ie., in the plane of the crack, in domain «2»). From (2) we have

Q4 (r,0,0) = s> cosnd &(t)dt + 0(1),
Curg B oo o
Q4P (r,0,0) =
1 Cy e sz cos ne[q’(“) "’l\p(a):'—rn_l i2 — +0Q),
Q4 (r,6,0) =
:—C44qz smnG[(P( a)_ 71\|1(a)]—1 +0(@1), (25)

rnfl T2 _a2

where the regular components that do not have singularities by r — a are
denoted by the symbol O(1). Substituting (25) into the expressions for the
stress intensity factors (24) and taking into account (19), we obtain

. 1
K, = %C‘Mskﬁlv ma Y cos nOI f;(m)dn,
n=0 0

K, = %CMSk%m 3 cosnO[£, (1) + £,(1)],
n=0

Mf MM_memngm (26)

n=0
where the functions f(€), f,(§) and f;(¢) are determined from the system of

Fredholm integral equations of the second kind (18).
In a similar way, in the case of axisymmetry one can obtain

1
5 CudylyVma f1), Ky =3 Codyny*Vra [g(®)dE, Ky =0,(27)
0

where the functions f(§) and g(§) are determined from system (20).
4.1.2. Mode II cracks. In this case the expressions for SIFs coincide with
(27) where functions f(§) and g(§) should be determined from the system of

Fredholm integral equations (22).
4.2.3. Mode III cracks. The expressions for SIFs take the form

1

1 —

K =0, Ky=0, Ky =3Cyn;"*Vra[fendn, (28)
0

where f(§) should be determined from the Fredholm integral equation (23).

It follows from (27), (28) that the interaction of two parallel cracks leads
to the non-trivial stress intensity factor K; for Mode I cracks (when the ra-
dial shear is equal to zero) (for a Mode I crack in an infinite solid K; =0
[13)]). On the other hand, for two parallel cracks under radial shear and zero
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normal stress, K; is nontrivial (for a Mode II crack in an infinite solid K; =0
[13]). Meanwhile, each of the SIFs K;, K, and K is affected by the initial

stresses SY, = S, (or elongation ratio A, =A,) and also depends on the dis-

tance h (or PB) between cracks, since the solutions of the Fredholm integral

equations depend on these parameters.

4.2. Periodic set of parallel co-axial cracks. We consider an infinite
body containing a periodic set of parallel coaxial penny-shaped cracks with
equal radii a, which are located in parallel planes y, =const: {r<a,
0<6<2my, =2hn, n=0+1+2,..} with centers on the axis Oy, .

4.2.1. Mode I cracks. On the faces of the cracks, we presribe fields of
normal tensile stresses o(r,0). Using the procedure similar to the one

presented in [2, 6], we obtain the following expression for the stress intensity
factors

S~ C,d ¢, kﬁ Z cos (nG)afnfl/ZJ‘G)n(t) dt,
1 n=1 0

Ky =0, Ky =0,

where functions ®,(t) should be determined from Fredholm integral equa-

tions
a n/2
—zj K, (x,t)d =gx‘[ T (xsin0)do, 0<x<a, n=0,1,2,
Ty T
__;h n__(n)
2z (x)= Codil, & x"c " (x)
with the kernel
n+1/2 %
K, (1) = F [ Lm0, s O, gy () =
0
_—n+l1/2 e*lﬂ__ et
a Tui1js M),y 5 (M) [kl ShiL ko pjxdx.

When the load on crack faces takes the form
o(r,0) = o,(r)cos0, (29)

by introducing the normalized on radii of cracks variables and functions
E=a’x, m=a’t, fi(§)=a0(a€)=a"d(x),
one can obtain the Fredholm integral equation in the dimensionless form:
/2

1
A& -2 [ VK, Em)dn =—aj T (gsin0)do, 0<E<1,
0

with the kernel
K,(&m) = &N [RE-n) - RE+m)]-[RE-1)- RE+1)]},

where

Re = g Rew (1 g ) - prew(1e 5 ) 0
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and Revy (1 + %) , =12, is the real part of y -function y(z) = %ln I'z).
J

In this case, K; takes the form
1
K, =-+VraCyd kﬁj.fl(n)dncose.
1y

For the problem with axisymmetry the representations for SIFs are:

K; = -Cudt, lcﬁl ma f(1), Ky =0, Ky =0,

and function f should be determined from the Fredholm integral equation

/2

1
7@~ L[ s man = 2& [ u(esin0)sin0do, u(@) = — oo
0 0

- kCyydily
with the kernel K(§,n)=R(E—-n)-R(E+m), where R(z) is determined
from (30).

4.2.2. Mode II cracks. In the case when radial stresses t(r) are specified
on crack faces, the expressions for SIFs are

1
2 ke
K, =0, K, =C,dn"? e [rovdn, Ky =0,
0

where function f(§) should be determined from the Fredholm integral
equation
kC, dn?

ERIN

1 /2
FE -] ke man =2 [ viEsine)do, v(© - -
0 0

with the kernel

KEm) =& [Ri(E-n) - R (E+m)]-¢[R(E-1) - R (E+1)],
where

1|k iz ky 1z
R, (2) E—[—Rew(l+—j——Re\|} 1+ =1
' k[ By 2By ) By 2B,
4.2.3. Mode III cracks. We consider the case when tangential torsion
loads 14(r) are applied on the cracks faces. The stress intensity factors take

the form

1
KI =0, KII =0, KU] = _C44n5?1/2 v Ta J.f(rl) dn,
0

and function f(§) should be obtained from the Fredholm integral equation

_ E150(a8)
- -1/2
44”3/

1 n/2
f&) - L[ FKEdn = ~2& [ w/(Esin0)do, w(e)
0 0
with the kernel
K(E,m) = EB; {n " [Ry(& — M) — Ry (E+ m)] — [Ry(& — 1) - Ry(& + D]},

where

R,(2) = Rew(1+2iT23).
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5. Influence of initial stresses on stress intensity factors. Below we pre-
sent the results of numerical analysis of initial stress effect on the stress in-
tensity factors for highly elastic materials with Treloar potential [34], Barte-
nev — Khazanovich potential [1], the potential of harmonic type [31] (these po-
tentials are used to model elastomers (rubber-like materials) with finite strain)
and for a laminated composite consisting of two alternating isotropic layers of
elastic materials. In the study of the composite, we will consider developed
cracks whose minimum dimensions exceed the values of the geometric para-
meters characterizing the structure of the composite material, ie., macro-
cracks. Also, we will only consider the processes of fracture which do not de-
monstrate the properties of the composite as a piecewise-homogeneous medi-
um (the type of fracture at the interface between the media, etc.). Under the-
se assumptions one can apply the known continuum model of the composite
[17, 24] with the overall mechanical characteristics of a transversely isotropic
body, the plane of isotropy is parallel to the planes of cracks location.

The parameters included in (2) for highly elastic materials are given in
[6]. For the laminated composite they take the form

1 _ _
Ny = 5(“13 + 5?1) 1(Au + S?l) 1{(AnAgg + S?1A33 +

+ Sk~ 2A 50y — Af)
£ [(A1 45 + 71 Az + STk, — 2410, — AT)° -
—4(Ay + ST (g + ST A5 ]
n o= gy, +S7) 7 m; = [(4,; + 5?1)”]‘ — g J(Ays +1y5) 7
ej = [nj(AnAgg + S?1A33 - A123 —Apyy) - A33“13] X
X [nj (4, + S?l) + A13]71(nj)71 “Ié’
d;=1+m,, j=12 Cu=ng,

where the parameters A, p, are expressed via technical constants in the
form [17]

A, =EQ1-VVHATY, Ay =EQ1-vHAT, A, =EV1+v)AT,
A=1-vZ-2v'Vv' —2w'V",

1 - '
“12:GEG12:§E(1+V)1’ B3 =G =Gy,

' "
V=V, V = Vg, V. =V,

E=E, E' = E,.
For a periodic set of parallel coaxial Mode I cracks subjected to uniform
normal tensile stress o(r,0) = c,(r)cos® (where o,(r) =c =const), the de-

pendence of the stress intensity factor ratio K;/K; (here K; is the SIF for
isolated Mode I crack in an infinite body, see [13]) on the initial elongation (or
contraction) ratio A; and on the dimensionless distance B between the cracks

are shown, in Fig. 1 and Fig. 2, respectively, for the material with Bartenev —
Khazanovich potential. It is seen that the SIF ratio depends greatly on the

values of initial elongation (or contraction) ratio A,, especially in the area of
compressive initial stress.
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Fig. 1. Dependence of stress intensity factor Fig. 2. Dependence of stress intensity factor
ratio K;/K; on elongation (or contr- rato K,/K; on the dimensionless
action) ratio A, for Bartenev — Khaza- distance 3 between the cracks for Bar-
novich potential (periodic set of parallel tenev — Khazanovich potential (periodic
coaxial Mode | cracks) set of parallel coaxial Mode | cracks)

Also, from Fig. 2 we can see that the mutual influence of cracks in the
body with an initial stress leads to a decrease (especially significant in the
case of small distances between cracks) in the stress intensity factor as

compared to K. E.g., for A, = 0.9 the value of K; at B =0.25 is smaller than

K{ by a factor of 2.2. With increasing distances between the cracks their
mutual influence is weakening, and the corresponding values of SIF tend to
the value K.

Figs. 3 and 4 illustrate the dependence of the stress intensity factor ratio
K;/K; on the parameter A, for a material with the Treloar potential (with
different values of ) and a material with the potential of harmonic type
(with different values of Poisson’s ratio v and P = 0.25), respectively. As we

can see in the latter picture, the compressibility of the material with the
potential of harmonic type, which is characterized by Poisson’s ratio, has a
noticeable effect on the SIF values. Thus, for A; = 0.7 the value of K, for the

Poisson’s ratio v = 0.1 exceeds the value of K; for v =0.5 by 20%.

K,/K{ K, /K[
L B=1.0 0.5 i D L
08 | P ﬁ 08 ¢
i 0.25 05 [ :
0.6
0.0625 -
0.4 .
0.3
0.2 0.2
0.1
0 1 2 3 M Ay
Fig. 3. Dependence of stress intensity factor Fig. 4. Dependence of stress intensity factor
ratio K;/K; on elongation (or contr- rato K,;/K[ on elongation (or contr-
action) ratio A, for Treloar potential action) ratio A, for potential of har-
(periodic set of parallel Mode | cracks) monic type (periodic set of parallel

coaxial Mode | cracks)
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In Figs. 5, 6 and 7, we present the results of numerical calculations for
the axisymmetric problem on a body with two parallel coaxial Mode I cracks,
when the faces of the cracks are loaded by uniform normal tensile stress
o(r) = o = const.

For the material with the Bartenev — Khazanovich potential, variations of
the stress intensity factor ratio K;/K; and -K;/K; with the initial
elongation (or contraction) ratio A, are shown in Fig. 5 and Fig. 6,
respectively, for the values of § =0.25, B =0.5 and B =1.0. In the figures we
can see that the stress intensity factors also substantially depend on the initial
stresses. The dependences shown in Fig. 6 have vertical asymptotes that
correspond to the «resonance-like» effect, which occurs when the initial
compressive stresses reach the values at which the local loss of material
stability takes place in the vicinity of the crack (for the form that is
symmetric with respect to the crack plane).

K, /K[ — -Ky /K[
B=1.0 — I
M | — 0.4
. 0.25
0.3
0.6
02 0.5
0.4 I B=1.0
01| P
02—t 0l—— 2
0.5 1 1.5 A 0.5 1 1.5 A
Fig. 5. Dependence of stress intensity factor Fig. 6. Dependence of stress intensity factor
ratio K;/K; on elongation (or contr- ratio —K;;/K; on elongation (or contr-
action) ratio A, for Bartenev —Kha- action) ratio A, for Bartenev — Khaza-
zanovich potential (two parallel coaxial novich potential (two parallel coaxial
Mode | cracks) Mode | cracks)

In Fig. 7, for the laminated composite made of aluminum / boron /
silicate glass with epoxy-maleinic resin [17], we show the dependence of the

SIFs ratio K;/K; on the glass concentration ratio ¢, for different values of
the initial stress parameter A; (for B = 0.25), indicating the influence of initial
stress and physical-mechanical characteristics of the composite on SIF values.

K, /Ky
| r=2.0
0.9 /
1.1
0.8 10
0.99
0.7 : : : = : :
0 0.2 0.4 0.6 0.8 C1

Fig. 7. Dependence of stress intensity factor ratio K;/K;" on the glass concentration ratio c,

for laminated composite (composition of aluminum / boron / silicate glass with epoxy-ma-
leinic resin) (two parallel coaxial Mode | cracks).
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Figs. 8, 9 and 10 illustrate the results for the case of axisymmetric
problems on solids with Mode II cracks, when radial stresses t(r) =t = const
are specified on the crack faces.

For the material with Bartenev — Khazanovich potential, the dependences
of the stress intensity factor ratio K;;/K;; (here Kj; is the SIF for an isolated
Mode II crack in an infinite body) on the initial elongation (or contraction)
ratio A, are shown in Fig. 8 for the values of B =0.25, B =05 and B=1.0
(solid lines are given for the case of a periodic set of parallel coaxial cracks,
dashed lines — for the case of two parallel coaxial cracks). Variations of the
stress intensity factor ratio K,/K;; with the initial elongation (or contraction)

ratio A, for this potential are displayed in Fig. 9 (for the case of two parallel
Mode II cracks). As we can see in the Figs. 8 and 9, the stress intensity factor
substantially depends on the initial stresses and geometric parameters of the
problem (the distance between the cracks and the radii of the cracks).
Besides, Fig. 9 demonstrates that mutual influence of two parallel Mode II
cracks results in non-trivial stress intensity factor K.

KII /K; KI /Kﬁ
1.8 0.8
1.6 0.6
14 | 04 |
A I 05
1.2 0.2 L
B=1.0% | p=10
1 0
0.5 1 1.5 M 0.5 1 1.5 M
Fig. 8. Dependence of stress intensity factor Fig. 9. Dependence of stress intensity factor
ratio K;;/Kj; on elongation (or contr- ratio K;/Kj; on elongation (or contr-
action) ratio A, for Bartenev—Kha- action) ratio A, for Bartenev — Khaza-
zanovich potential (Mode Il cracks) novich potential (Mode Il cracks).

The dependences shown in Figs. 8 and 9 have vertical asymptotes which
correspond to abrupt increases in the SIF values when the initial compressive
stresses reach the values that correspond to the local loss of stability of the
material in the vicinities of the cracks.

In Fig. 10, for the periodic set of parallel cracks the dependences of the
stress intensity factor ratio K, /Kj; on the dimensionless distance B between
the cracks are given for A; =2.0 (it corresponds to tensile initial stresses),

A, =0.9 (this corresponds to compressive initial stresses) and A, =1.0 (the

case with no initial stresses) in the case of highly elastic material with Treloar
potential. The figure shows that the interaction between cracks leads to an
increase in the value of stress intensity factor as compared to the case of an
isolated crack in an infinite body. With increasing distance between cracks the

values K;; decrease and tend to the values Kj;. For the values of B >3 the

mutual influence of cracks can be neglected in practical calculations, since in
this case the difference of the SIF values in the vicinity of the cracks for the
case of the periodic system of cracks is different from the SIF values for an
isolated crack in an infinite body by less than 3 %.
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Fig. 10. Dependences of stress intensity Fig. 11. Dependences of stress intensity
factor ratio K;;/Kj; on the dimensi- factor ratio K,;;/Kj;; on elongation
onless distance 3 between the cracks (or contraction) ratio A, for Treloar
for Treloar potential (periodic set of potential (Mode IIl cracks).

parallel coaxial Mode Il cracks).
For Mode III cracks subjected to uniform tangential stress t4(r)=t=const,

the dependences of the SIF ratio K;;/Kj; (here Kjj; is the SIF for an isola-
ted Mode III crack in an infinite body) on the initial elongation (or contrac-
tion) ratio A, are shown in Fig. 11 (solid lines correspond to the case of a peri-

odic set of parallel coaxial cracks, dashed lines — to the case of two parallel
coaxial cracks) in the case of material with Treloar potential. It can be seen
that the initial stresses significantly affect the values of the stress intensity
factor. However, in contrast with the above cases, on pre-stressed solids with
Mode I or Mode II cracks the effect of «resonance» SIF changes has not been
detected in the problem on the solid with cracks under tangential torsion.

Fig. 12 for the same material illustrates the variations of the SIF ratio
K,;/Kj; with the dimensionless distance between cracks B in a body with

Mode IIT cracks (solid lines correspond to the case of a periodic set of parallel
coaxial cracks, dashed lines — to the case of two parallel coaxial cracks).
In Fig. 13, for the laminated composite, we show the dependences of the

stress intensity factor ratio K,;/Kj; on the ratio of the elasticity modules of
the layers E(l)/E(2) for B =0.25 in the case of the periodic set of parallel
cracks. The dependences are presented for different wvalues of initial
elongation (contraction) ratio A,. As we can see, the values K;;/Kj;; increase

monotonously with increasing E(l)/E(z).

Ky /Ky S— K /K
7 | B=0.25
2 =0.9 105 ———
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1.0
06 08
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Fig. 12. Dependences of stress intensity Fig. 13. Dependences of stress intensity
factor ratio K,;;/Kj;; on the dimensi- factor ratio K,;;/K;;; on EY/E® for
onless distance B between cracks for laminated composite (periodic set of
Treloar potential (Mode IIl cracks). parallel coaxial Mode Il cracks).

42



6. Critical parameters of loading in compression. According to the
method described in the Introduction, the critical parameters of compression
that correspond to the local loss of stability of a material under compression
along the cracks planes are determined from the solution of the above-
mentioned inhomogeneous problem on the stress-strain state of a cracked
solid with initial stresses as values of the initial compressive stresses whose
achieving is followed by sharp «resonance-like» changes in the stress intensity
factors.

Fig. 14 shows the results of calculations relying on the above method of
the values of the relative critical contraction & =1-2, of the material with

Bartenev — Khazanovich potential, which correspond to the local instability of
the body with circular cracks under a compressive load oriented parallel to

the crack planes. The figure illustrates the dependence of the values g, on

the parameter B = h/a characterizing the relative sizes of cracks, for the

periodic set of parallel co-axial cracks (solid line), two parallel co-axial cracks
(dashed line) and a single isolated crack (dotted line) (in this case, for the
Bartenev — Khazanovich potential, the critical compressive parameter is

8; =0.307 [15]). Note that the results are shown for the bending (anti-
symmetric) form of the local loss of stability (obtained from numerical
solutions of the problems on solids containing parallel Mode II cracks), since
for the symmetric form of stability loss the critical values &, (obtained from
numerical solutions of the problems for solids containing parallel Mode I
cracks) significantly exceed the critical values for the bending form. The
figure shows that the mutual influence between the cracks leads to a
significant reduction of the values of relative critical contraction ¢; (and thus
lowers the values of the critical compressive load) as compared to the case of
a single isolated crack in an infinite body. Furthermore, the entire range of
parameter values in the case of the periodic system of cracks are higher than

for the case of two parallel cracks but lower than for the case of a single
isolated crack, which is consistent with physical considerations.

€ -G
B=05
C1:0.3
OrY| e — RO
0.2
0.2
0.1
0.1
0 1 2 3 B 0 10 20 EV/E®
Fig. 14. Dependence of the relative critical re- Fig. 15. Dependence of the dimensionless cri-
duction g, on distance ratio 3 for Bar- tical compressive stresses G =S}, /E
tenev — Khazanovich potential. on the ratio E(l)/E(z) for laminated
composite.

Fig. 15 for the laminated composite with isotropic layers shows the de-
pendence of the dimensionless critical compressive stresses G = SY|/E (stres-
ses related to the reduced modulus of elasticity of the composite under consi-
deration) on the ratio E(l)/E(Q) of the elastic moduli of the layers (solid line is

for the problem on the periodic set of cracks, dashed line — for two parallel
cracks).

43



Table 1 for the material with the potential of harmonic type gives values
g, for different values of the dimensionless distance [} between the cracks
and the Poisson ratio v, for the case of periodic set of parallel co-axial cracks.
For sufficiently large values of  we obtain the values g, that coincide with

the critical values 81’ =(2+v)"! obtained in the problem on an isolated crack
in an infinite body [15].

Table 1. Values of relative critical reduction €, for an elastic material with the
potential of harmonic type

p

A 0.0625 | 0.125 0.25 0.50 0.75 1.00 2.00 5.00 10.00
0.1 | 0.0159 | 0.0529 | 0.1377 | 0.2631 | 0.338 | 0.3842 | 0.4565 | 0.4756 | 0.4762
0.2 | 0.0145 | 0.0481 | 0.1247 | 0.2399 | 0.3107 | 0.3562 | 0.4312 | 0.4538 | 0.4545
0.3 | 0.0133 | 0.0439 | 0.113 | 0.2182 | 0.2849 | 0.3291 | 0.4067 | 0.4337 | 0.4347
0.4 | 0.0123 | 0.0401 | 0.102 | 0.1974 | 0.2597 | 0.3023 | 0.3822 | 0.4151 | 0.4166
0.5 | 0.0114 | 0.0365 | 0.0916 | 0.1769 | 0.2343 | 0.2749 | 0.3567 | 0.3975 | 0.3999

7. Conclusions. In this paper, the study of problems of fracture
mechanics of bodies with cracks under the loadings directed along the cracks
planes is carried out using the method proposed in [8, 12] within the three-
dimensional linearized mechanics of solids. It, as against the methods of the
classical linear fracture mechanics, has allowed to reveal the influence of the
stresses oriented parallel to the crack plane on the fracture parameters.
Within the above general method we proposed an approach to combined
investigation of fracture mechanics problems on solids with initial stresses and
problems on fracture of cracked materials with compression along cracks.
Such a unified approach allows not only to investigate the effect of initial
stress on the stress intensity factors, but also to effectively determine the
critical parameters under solid compression along the cracks. It should be
noted that the proposed approach allows the study in a uniform manner for
different material models (the material model being only specified at the
stage of numerical calculation of resolvant equations obtained in the general
form).

The numerical results obtained for highly elastic materials with some ty-
pes of elastic potential and a layered composite (modeled in continuum appro-
ximation as transversally isotropic elastic bodies) allow the following conclu-
sions to be made:

e for all the problems considered the stress intensity factors substantially
depend on the initial stresses;

e the values of stress intensity factors change abruptly (the «resonance-
like» effect) when the initial reduction ratio A, tends to the value at which

the local loss of stability occurs in cracks vicinities. According to the combined
approach proposed here this effect allows the determination of critical loading
parameters in problems on solids compression along the cracks they contain;

e the mutual influence of two parallel cracks in pre-stressed infinite body
leads to the nontrivial SIF K for cracks under normal stress and the

nontrivial K; for cracks under radial shear;,

e the geometrical parameters of the problems (the distances between
cracks and cracks radii) have a great effect both on the values of stress
intensity factors and on the relative critical contractions.
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OOCHNIOKEHHA HEKNACUYHUX NPOBJIEM PYUHYBAHHA NONEPEQHBO
HAMPYXEHUX TIN I3 B3AEMOAIIOYNMU TPILLMHAMU

Pozzaanymo 0ea munu HeKaaCuuHUX Mexaniamie PYuHY8aHHs, 4 came: PYUHYBAHHI Min
3 mplyurHamu 8 Yymosaxr 01l CNpAMOsaAHUX 83008H# NAOWUH PO3SMAULYBAHHA MPIUWUH
nouamKosuxr (3aAUUWLKOBUX) HANPYHEeHdb i PYUHYBAHHA Mid NPU CMUCKAHHI 830084
napateavHux mpiwun. IIpu 0ocaiOxncenHi HeoCeCUMempuitHUX Mma OCecuUMempuULHUL
300a% 04 HECKIHUEHHUX MIA, WO MICMAMb 081 NAPAAEAbHI CNIBBICHI MPIWUHU YU
nepioduyHy cucmemy CnigeiCHUX NAPALLALHUX MPIWUH, 3ACTMOCOBYEMBCS KOMOIHO-
8AHUU AHAAIMUUHO-UUCCALHUL MemOo0 8 PAMKAL MPUBUMIPHOT ATHEAPUI0BAHOT MeXAHT-
KU OefopMIBHUX Min. 3 BUKOPUCTMAHHAM NOOAHL HANPYNHCEHb MaA Nepemiujend 8 Pam-
KAx ATHeapu3o8aHol meopii uepe3 2APMOHIUHI NOMEHYIAALbHI PYHKYIL Mad WAALOM 3aA-
CMOCYBAHHA THMe2ParbHUX nepemgopens DPyp’e — Iankean 3adaui 3800amuvcs 00 PO3-
8’A3Y0UUX THMePALbHUX PIiBHAHD Dpedzoavma O0pyzo02o pody. ITidxid 0ossoase nposo-
OJumu Oocaidxicenns 3a0au 8 €0UHIL 302aAbHIU POPMI 04 CMUCAUBUX I HECTNMUCAUBUL
00HOPIOHUX 130MPONHUX AOO0 MPAHCEEPCAABHO-I30MPONHUL MiA, A& KOHKPeMU3ayis Mo-
Odeat mamepiany 301UCHIOEMBCA AUUe HA CMa0ll YUCCABHO20 PO3E’A3KY OMPUMYBAHUL 8
3a2anbHIU Popmi P03 A3YOUUX PIBHAHDL. IIPOAHALI308AHO 8NAUE NMOUAMKOBUX HANPY-
JCendb Ha KoePiyleHmu THMEHCUBHOCTT HANPYdHceHb 0Ai 8UCOK0eAACTNULHUL MAMEPIANi8
ma wapysamux Komnosumis, axi mo0esr0tmscs MpPaHc8ePpcarbHO-130MPONHUMU MINA-
mu. ITpu OocAzHeHHT CMUCKAIOYUMU NOUAMKOBUMU HANPYHCEHHAMU 3HAUEHD, W0 810N0-
810a10Mb NOKAALHIU 8mpami cmillkocmi mamepiany 8 OKOAL MPIUWUH, NPOABALIOMBCI
«Pe3oHaHCONO00IONT» eexmu, sAKi, 810N08I0HO 00 3a3HAUEH020 KOMOITHO8AHO20 Memody,
003804A10Mb BU3HAUAMU KPUMUUHT (2PAHUYUHE) NAPAMEMPU HABAHMANICEHHL NPU CMUC-
KaHHT miaa 830083 mpiwur. CPHoPMYLLOBAHO BUCHOBKU NPO 3aNeHCHICD KoediyuleHmia
THMEHCUBHOCTT HANPYNHCEHD MaA KPUMUUHUX (2PAHUYHUX) napamempis cmucky 6i0 zeo-
MeMPUUHUX napamempis 3a0ay ma Pi3uKo-MmexraHiuHUX TapaKmepucmux mamepianis.

WUCCIEAOBAHUE HEKITACCUYECKUX NMPOBJIEM PA3PYLUEHUA NPEABAPUTEJIBHO
HAMNPSAXXEHHbIX TEJ1 CO BSAUMOAEUCTBYIOLWMMU TPELLMHAMMU

Paccmompernsl 08a muna HexAACCUUECKUX MeXLAHUSMO8 PAZPYUEHUA, G UMEHHO: PA3PY-
WeHUe Mea C MPeWUHAMU 8 YCAosusx Oeticmeus HaAnpasieHHbvlxr 8004b maocKocmel
PACNOAOHCEHUS MPEUWUH HAUAABHBLL (OCTMAMOURBLE) HANPAHCEHUT U PA3PyUwerHue mes
npu cxcamuu 8004b NAPAAEALHBLE MPewuH. IIpu uccaedosaHUlL HeoCecCuUMMemPULHBLYL
U ocecummempuurslx 3a0ar 0as GecKoHeuHbLr Mmea, codepicawux 0se napatresvHble
COOCHblE MPeWUHBL UAU NePUOOUUECKYI0 CUCTEMY COOCHBLL NAPAANLEALHBLL MPEeUUH,
npumensiemcs KoMOUHUPOBAHHBLIU AHAAUMUKO-UUCA080U MemO0 8 PAMKAX mpexrmepHoll
AUHeaPuU3UPoBaAHHOU Mmexaruku Oegopmupyemvir men. C ucnoavzosanuem mpedcmas-
NeHUTl HanpasceHUull U nepemewerull 8 PaMKAX AUHeAPUSUPOBAHHOL MeoPUU uepes 2ap-
MOHUUECKUE NOMEHYUAAbHbE HYHKYUU U NYymem NPUMeHeHUS UHMEeZPAALHBLYL
npeo6pasosarull Pypve — Xanxeas, 3adauu ceodames K paspeutarowum UHmMepaLbHblm
ypasnenuam Ppedzoavma emopozo poda. [Iod0xod nosgoasem mposodums uccaedosarue
3a0au 8 edumou obwell Ppopme 04 CHCUMACMBLLY U HECHCUMACMBLL OOHOPOOHBLL U30-
MPONHBLL UAU MPAHCEEPCAABHO-USOMPONHBLL YNPYLUX Mer, & KOHKPemu3ayus modeiu
MAMEPUALL OCYULCTNBAILMCA AUULD HA CMAOUU YUCAEHHOZO0 DeULeHUS NOAYUALMBLL 8
obwell Popme paspewarowur ypasrerul. IIPOAHANIUBUPOBAHO 6BAUAHUE HAUAALHBLL
HAnpAdHceHUt Ha KOIPPUYUEHMBL UHMEHCUBHOCTNU HANPANHCEHUL OASL 6bLCOKOIAACTNU-
YeCKUL MAMEPUAL08 U CAOUCMBLL KOMNOZUMO8, MO0eAUPYEMBLL MPAHCEEPCAALHO-US0-
MPONHBLMU YNPYeUMU mesamu. IIpu docmusceHUU CHUMAOUWUMU HAUAALHBLIU HANPSL-
HCEHUAMU 3HAUEHUL, COOMBEMCMEYIOU,UXL LOKAALHOU Nomepe Ycmoluugocmu mamepua-
A0 8 OKPECTNHOCTIU MPewuH, 00HAPYHCUBAIOMCA «Pe30HaconodobHbler agexmobl, KOmMo-
pble, CO2AACHO YKAZAHHOMY KOMOUHUPOBAHHOMY MemOOY, NO380AAI0OM ONpedesims Kpu-
muueckue (npedeavHble) NAPAMEMPbL HAZPYHCEHUS NPU CHAMUU Merd 8004b MPEWUH.
Chopmyauposanv, 6b1800bL 0 3A8UCUMOCTIU KOIPPHUYUESHMOE UHMEHCUBHOCMU HANDPSA-
sHcerull u Kpumuyeckuxr (npedesbHuvlr) NaApamMempos CHAMUSL OM 2e0MeMPULECKUL NaA-
pamempos 3a0ay U HUIUKO-MeLAHUYECKUL LAPAKMEPUCNUK MAMEPUALO08.
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