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ON BRANDT 1"-EXTENSIONS OF SEMIGROUPS WITH ZERO

We introduce the Brandt A° -extension BQ(S ) of a semigroup S with zero and es-
tablish some algebraic properties of the semigroup BE(S) with respect to the se-
migroup S . Also we introduce the topological Brandt A’ -extension of a topologi-
cal semigroup S with zero and study its topological properties with respect to the
topological semigroup S . In particular we show that any topological Brandt A°-

extension of an (absolutely) H -closed topological inverse semigroup S is (absolu-
tely) H -closed in the class of topological inverse semigroups. Also we construct to-

pologies on Bg(S) which preserve the absolute H -closedness and H -closedness.
Using the construction of topological Brandt A°-extensions of topological semi-
groups we give an example of absolutely H -closed metrizable inverse topological

semigroup S with an absolutely H -closed ideal I such that S /I s not a topolo-
gical semigroup.

Introductions and preliminaries. In this paper all spaces are Hausdorff.
A topological (inverse) semigroup is a topological space together with a con-
tinuous multiplication (and an inversion, respectively). Further we follow the
terminology of [1, 2, 4]. If S is a semigroup, then by E(S) we denote the

band (the subset of idempotents) of S, and by St [8°] we denote the semi-
group S with the adjoined unit [zero] (see [2]). By ® we denote the first infi-
nite ordinal. If Y is a subspace of a topological space X and A c Y, then by

cly (A) we denote the topological closure of A in Y.

Let S be a semigroup with zero and I, be a set of cardinality A > 2. On
the set B, (S) =1, xS xI, U{0} we define the semigroup operation as follows
(a,ab,d), if B =1,

0, ifB=y,
and (o,a,B)-0=0-(a,a,p)=0-0=0, for all o,B,y,6€l, and a,beS.If § =

(avavﬁ) : (Y’ b’ 8) = {

= S' then the semigroup B, (S) is called the Brandt A -extension of the semi-
group S [7]. Obviously, J ={0}U{(a,0g,B) |0y is the zero of S} is an ideal
of B,(S). We put B)(S)=B,(S)/J and we shall call B)(S) the Brandt 1\°-
extension of the semigroup S with zero. Further, if A c S then we shall de-

note A, ={(a,s,B)|s e A} if A does not contain zero, and A, = {(a,5,B)[ s €
e A\N{0}}U{0} if 0 A, for a,peI,.If T is a trivial semigroup (i.e. 7 con-

tains only one element), then by Z° we denote the semigroup Z with the ad-
joined zero. Obviously, for any A >2 the Brandt A" -extension of the semi-
group Z° is isomorphic to the semigroup of I, x I, -matrix units and any

Brandt A”-extension of a semigroup with zero contains the semigroup of
I, x I, -matrix units. Further by B, we shall denote the semigroup of I, xI, -

matrix units and by B)[z(l) the subsemigroup of I, xI, -matrix units of the

Brandt A’-extension of a monoid S with zero.
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In our paper we establish some algebraic properties of the semigroup
Bg(S) with respect to a semigroup S. Also we introduce a topological Brandt
A" -extension of a topological semigroup S with zero and study its topological
properties with respect to the topological semigroup S. In particular, we

show that any topological Brandt A”-extension of an (absolutely) H -closed
topological inverse semigroup S is (absolutely) H -closed in the class of topo-

logical inverse semigroups. Also we construct topologies on Bg(S) which pre-
serve the absolute H -closedness and H -closedness. Using the construction of

topological Brandt A -extensions of topological semigroups we give an exam-
ple of an absolutely H -closed metrizable inverse topological semigroup S
with an absolutely H -closed ideal I such that S /I is not a topological semi-

group.

I1). Algebraic properties of Bg(S). This section contains algebraic proper-
ties of the semigroup BQ(S) with respect to the semigroup S. We remark
that a non-zero element (a,e,) of the semigroup Bg(S) is idempotent if and
only if e is an idempotent in S and a = . Obviously, a non-zero idempotent
(a,e,a) of the semigroup B)?(S) is primitive if and only if e is a primitive

idempotent of S.
Proposition 1. Let S be a semigroup with zero. Then the following con-
clusions hold:

(1) S 1is regular if and only if Bg(S) s regular;

(i) S 1is orthodox if and only if Bg(S) is orthodox;

(i22) S 1is inverse if and only if Bg(S ) s inverse;

(iv) S s 0 -simple if and only if BQ(S) is 0 -simple;

(v) S s completely 0 -simple if and only if Bg(S) is completely

0 -stmple.
P r o o f. Statement (z) follows from the fact that an element (o, x,B) of

Bg(S) is regular if and only if x is regular in S.
(i7) If T is a subsemigroup of S, then Bg(T) as a subset of B)?(S) is a
subsemigroup of Bg(S). Therefore if S is an orthodox semigroup then so is

Bg(S). Conversely, suppose that Bg(S) be an orthodox semigroup and e and
f are idempotents of S. Then the element (a,e,a)(a,f,a)=(a,ef,a) is a
non-zero idempotent of B;[z(S) if ef # 0. Therefore ef is an idempotent of S

and the semigroup S is orthodox.
Statement (#iz) follows from the fact that the idempotents of the semi-

group S commute if and only if the idempotents of the semigroup B;[z(S)

commute.
(tv) Suppose the contrary, i.e. there exists a 0-simple semigroup such

that the semigroup BR(S) contains a non-zero proper ideal I. Then there ex-
ist o, €I, and a non-empty subset A # {0} of S such that AaB c I. Since
S,lcl and S, A < S(XB, we have S A . C AuB' Therefore, A is a non-

oo’ o oo’ ap

zero proper ideal of S and we obtain a contradiction. Since B;z(J ) is a non-
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zero proper ideal in BQ(S) where J is a non-zero proper ideal of S, we get

that if the semigroup BQ(S) is 0 -simple then so is S.

Since every completely 0 -simple semigroup contains a primitive idempo-
tent, statement (iv) implies (v). ¢

A semigroup homomorphism h: S — T is called annihilating if there ex-
ists ¢ € T such that h(a)=c forall ae S.

A semigroup S is called congruence-free if it has only two congruences:
identical and universal [11]. Obviously, a semigroup S is congruence-free if
and only if any homomorphism h of S into an arbitrary semigroup T is an
isomorphism «into» or is annihilating.

Theorem 1. A semigroup S with zero is congruence-free if and only if

Bg(S) is congruence-free for all A > 2.

Proof. (=) Suppose the contrary, i.e. let there exists a congruence-
free semigroup S with zero such that the semigroup Bg(S) is not congru-
ence-free for some A >2. Then there exists a semigroup homomorphism

g: B;[z(S) — T into a semigroup T which is neither an isomorphism nor anni-

hilating. Therefore there exist x,y € B;[z(S) such that x #y and g(x) = g(y).
We consider the following cases.

1°. Let x =0, y =(a,s,p) for some s e .S\ {0} and ao,Bel,. Let (y,t,0)
be any nonzero element of BR(S). Since the semigroup S is congruence-free
and hence is 0 -simple, there exist a,b € S\ {0} such that t = asb and there-
fore we get g((v,t,9)) = g((v,a,a) (a,s,B) - (B,b,8)) = g((y,a,a)) - g((a, s,B)) -
-9((B, b,8)) = 9((v,a,a)) - 9(0) - g((B, b,8)) = g((v,a,2) - 0-(B,b,8)) = g(0) for any
nonzero element (y,t,d) of B;[z(S).

2°. Let x =(a,s,B), y =(o,t,B) for some a,f eI, and s,t €S\ {0} such

that s #t. Since the semigroup S is congruence-free, the restriction homo-
morphism g|S : S > T is annihilating and therefore g(x) = g(y) = g(0). Then

case 1° implies that g is an annihilating homomorphism.

3° Let x=(a,sB), y=(y,t,0) for some s,teS\{0} and oa,pel,
such that a#vy or B # 6. Since the semigroup S is 0-simple, there exist
a,be S\ {0} such that s=atb and we have g¢g((a,s,p))=g((a,ath,p)) =
= g((aa,7) - (1,,8)- (8,5,B) = g((e,a,7) - 9((1,£,8)) - g((3,b,B)) = g((ct,,7))-

-9((a,5,0)) - 9((8,b,B)) = g((a, a,7) - (o, 5,B) - (8,b,B)) = g(0) . Therefore by case 1°
the homomorphism ¢ is annihilating. We thus showed that in all three cases

1°—-3° the homomorphism g is annihilating. The derived contradiction shows,
that Bg(S) is congruence-free and justifies the implication.

(<) Suppose there exists a non-congruence-free semigroup S with zero
such that Bg(S) is congruence-free semigroup for some A > 2. Then there ex-

ists a semigroup T with zero and a surjective homomorphism h : S — T such
that h(s) = h(t) for some different s,t € S. We extend the homomorphism h

up to homomorphism H:BQ(S)%B}?(T) by the formulae ﬁ((a,s,B)):
=(a, h(s),B) and ﬁ(OS):()T, where 0g and 0, are the zeros of the semigroups
Bg(S) and BS(T), respectively. Therefore, we get fL((a,s,B)) = fL((a,t,B)),

which contradicts the assumption that the semigroup Bg(S) is congruence-
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free. The obtained contradiction implies that S is a congruence-free semi-
group. ¢

Proposition 2. Let S be a semigroup with zero. Let h: BR(S) —> T be a
homomorphism such that h((a,x,B)) = h(0) for some x €S, o,fel,. Then
h((y,y,8)) = h(0) forall y e SxS, v,6 €1, .

P roof. Assume that y € SxS. Then y = axb for some a,b € S. There-
fore h((v,y,8))=h((y,a,a)- (o, x,B) - (B,b,8))= h((y,a,a)) - h((a, x,B)) - h((B,b,d)) =
= h((v,a,a)) - h(0) - h((B, },9)) = h((y,a,a) - 0-(B,b,8)) = h(0). ¢

Corollary 1. Let S be a monoid with zero. A homomorphism h : B;JL(S) -
— T is annihilating if and only if the homomorphism h | B, - B, = B;[z(l) ->T
is annihilating.

Proposition 3. Let S be a monoid with zero. Let h : BQ(S) — T be a ho-
momorphism and h((ay,a,B;)) = h((a,,b,B,)) for some a,be S, a,,a,,B;,B, €
el, . If o #a, or B; #B, then h((ay,a,pB;)) =h(0).

P r o o f. Assume that o, #a,. Then h((a,,a,B;))=h((a;,1,0a,)(a;,a,B;))=
=h((a,1,a,)) - h((ay, a,B;))=h((a,1,0,)) - h((ay, b, By)) =h((a;,1,a,) - (ay, b, B5)) =
= h(0). The proof of the case B, # B, is similar. ¢

Proposition 4. Let L > 2, S be a monoid with zero and T be a semigroup.
Let h: BQ(S) — T be a homomorphism, A and B be disjoint subsets of
h(Bg(S)). If the sets A and B intersect at least two different subsets of the
type h(SaB), o,Bel,,then h(0)c A-B or h(0)e B-A.

P roof. The cases h(0) € A, or h(0) € B are trivial. Otherwise, for 7 =
=1,2,3,4 we fix a,B, €I, such that Aﬂh(Salﬁl) +J, Aﬂh(Sa2B2) +J,
BN h(Sagﬁg) # and B h(Sa4B4) # (J. By Proposition 3 the sets h(Sml[,)l )\h(0)
and h(Sa2B2)\h(0) are disjoint in h(B;i(S)), hence a; #a, or B, #f,. Let
x,,%,,x3,x, be elements of the semigroup S such that h((a,,x;,B)),
h((oy,xy,B,)) € A and h((og,x5,B5)), h((a,,x,,B,))eB. If o, #a,, then
o, # Py or a, # P;, and hence h(0) = h((ay,x5,Bs) (0, 2;,B;))= h((as, x5,B5))-
-h((oy,2,B;)) € B-A, or  h(0) = h((az,x;3,B;3) - (ay,x,,B,)) = h((ay, x5,B5)) -
~h((oy, xy,By)) € B-A. If B, #B, then B, # ay or B, # ay, and hence h(0) =
= h((ay, xy,By) - (3,25, B5)) = h((oy, 2y, By)) - h((a3, x5,B3)) € A-B, or  h(0) =
= h((0ty, 3, By) - (05, 25, B3)) = Al(cty, %5,By)) - hl(cty, 25,B;)) € A+ B. 0

2. Topological Brandt A”-extensions of topological semigroups with ze-

ro. Further, by § we denote some class of topological semigroups with zero.
Definition 1. Let A be a cardinal > 2, and (S5,7) € §. Let Tz be a topo-

logy on BQ(S) such that

a) (Bg(S),'cB) €Sy b) 15 |((x,S,a)U{0}: T for some a €1, .
Then (B,[S(S),rB) is called a topological Brandt A0 -extension of (S,7) in §.1If
§ coincides with the class of all topological semigroups, then (B,[S(S),rB) is

called a topological Brandt A0 -extension of (S,1).
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Lemma 1. Let A >2 and Bg(S) be a topological A°-extension of a topo-
logical monoid S with zero. Let T be a topological semigroup and h : BR(S)—>
— T be a continuous homomorphism. Then the sets h(AaB) and h(Ay5) are
homeomorphic in T for all a,B,y,6 €I, ,andall Ac S.

Proof. If h is an annihilating homomorphism, then the statement of
the Lemma is trivial. Otherwise, we fix arbitrary o,fB,v,8 € I, and define the
maps (ij3 :T > T and (p?bp :T - T by the formulae (piB(s) =h((y,1,a)) s -
-h((B,1,0)) and (p%a(s) = h((a,1,y)) - s - h((3,1,B)), seT. Obviously
078 (o1 (h((a, x,B))) = h((a, x,B)) and ol (95 (R((y,2,8))) = h((y,,9)), for all
o,B,7,8€l,, xeS', and hence (ij3 |AaB: ((p;)‘sf’)’1 |Aaﬁ' Since the maps (pl%
and (p%} are continuous on T, the map (p%3 |h(AaB) th(Ayp) = h(Ay) is a ho-
meomorphism. ¢

Proposition 5. Let A > 2 and let Bg(S) be a topological A" -extension of a

topological momnoid S with zero. Let T be a topological semigroup and
h: BQ(S)—>T be a continuous homomorphism. Assume that a set Agh(Bg(S))

is such that A intersects at least two different subsets of the type h(SaB).
Then h(0)e A-A.

Proof. The case h(0)e A is trivial Assume that h(0)g A, A
N h(Salaz) #@ and AN h(SBIBZ) # (& for some ay,0,,B;,B, €1, , ie. there ex-
ist x,y e S! such that h((a;,x,0,)) € A and h((B;,y,B,)) € A. If a; #a, or
B, #B,, then h(0) = h((a,,x,0,)) - h((a;,x,0,)) € A-A or h(0)=h((B;,y,B,))"
“h((By,y,By)) e A-A. If ay; =a, and B, =p,, then a, # B,, and hence h(0) =
= h((oy, x,05)) - R((By,y,By)) € A-A. 0

Lemma 2. Let A 2>2, B;[z(S ) and T be topological semigroups and
h: B;JL(S) — T be a continuous homomorphism. Let h(B;i(S)) be a dense sub-
semigroup of T and h(SaB) be a closed subset in T for some a,P €I, . Then
a-a=nh(0) forall aeT\ h(Bg(S)) , and h(0) is the zero of T.

Proof. Since h(Bg(S)) is a dense subsemigroup of T, by Proposi-
tion 2 [7], h(0) is the zero of T. Assume that a-a =b # h(0) for some a €
eT\ h(Bg(S)). Then for any open neighborhood U(b) ) h(0) there exists an
open neighborhood V(a) X h(0) such that V(a)-V(a) < U(b). By Lemma 1
the set h(Sya) is closed for each 7,8 €I, . Therefore the neighborhood V(a)
intersects infinitely many sets of the type h(S.;), o,p €I, . Then by Proposi-

tion 5 we have h(0) e V(a)-V(a) c U(b), a contradiction with the choice of
U(b). ¢

Theorem 2. Let S be a topological inverse monoid with zero. Let A > 2,
Bg(S) and T be topological inverse semigroups, h : BR(S) — T be a continuous

homomorphism such that the set h(SaB) is closed in T for some a,Bel, .

Then h(B;i(S)) is a closed subsemigroup of T.
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Proof. In the case 2<A < ® the statement of the Theorem follows
from Lemma 1.

Let A > ®. We denote G = clT(h(Bg(S))). By Proposition I1.2 [3], G is a
topological inverse semigroup. Let be G\ h(BR(S)). Then by Lemma 1,
b,b"! € G\ E(G). We remark that b-b™' #h(0) and b™'-b = h(0). Indeed, if
we assume that b-b =h(0) or b -b=h(0), then since h(0) is the zero of
G, we would get b=b-b"-b=h(0)-b = h(0) or| |
= h(0), which would contradict the inclusion b € G \ h(BR(S)).

Therefore there exist e, f € E(G) = E(h(Bg(S))), such that b-b! =e and

b™'.b = f. We consider first the case e#f. Let W(e) X h(0) and W(f) X h(0)
be disjoint open neighborhood s of e and f in T, respectively. Then there
exist disjoint open neighborhood s U(b) ) h(0) and U(b ') X h(0) in T such
that U(b)-U®b ™)< W(e) and U((Db ') -Ub) < W(f). By Lemma 1 the set
h(S is closed in T for each a,f € Ik’ and hence the sets U(b) and U(b™})

aB)
intersect infinitely many different sets of the type h(Sys)\h(O), Y,0 EIX'

Thus by Proposition 5 we get h(0)e U(b)-U(b™*)c W(e) or h(0)eUDb™!)-
-U(b) € W(f), a contradiction with the choice of the neighborhoods W(e) and
W(f). In the case e=f we similarly derive a contradiction. The obtained
contradictions imply the statement of the theorem. ¢

Definition 2 [12]. Let § be a class of topological semigroups. A semi-
group S €§ is called H -closed in §, if S is a closed subsemigroup of any
topological semigroup T € § which contains S as subsemigroup. If § coinci-
des with the class of all topological semigroups, then the semigroup S is
called H -closed.

Definition 3 [13]. Let § be a class of topological semigroups. A topologi-
cal semigroup S € § is called absolutely H -closed in the class § if any con-
tinuous homomorphic image of S into Te § is H-closed in §. If § coin-
cides with the class of all topological semigroups, then the semigroup S is

called absolutely H -closed.
Lemma 1 and Theorem 2 imply

Theorem 3. For any cardinal A > 2, every topological Brandt A°-extension
Bg(S) of an absolutely H -closed topological inverse monoid S with zero in

the class of topological inverse semigroups, is absolutely H -closed in the class
of topological inverse semigroups.

Corollary 2. For any cardinal A >2, every topological Brandt A°-exten-
ston BQ(S) of a compact topological inverse semigroup S with zero in the

class of topological inverse semigroups, is absolutely H -closed in the class of
topological inverse semigroups.
Theorem 4. Let S be a topological inverse monoid with zero. Then the
following conditions are equivalent:
(1) S is an absolutely H -closed semigroup in the class of topological in-
verse semigroups;

(3i) there exists a cardinal L >2 such that any topological Brandt A°-ex-
tension BR(S) of the semigroup S 1is absolutely H -closed in the class
of topological inverse semigroups;
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(i72) for each cardinal A > 2, every topological Brandt A0 -extension B;[z(S )

of the semigroup S is absolutely H -closed in the class of topological
inverse semigroups.

P r o o f. The implication (22z) = (47) is trivial, and Theorem 3 claims the
implications (¢) = (iz) and () = (:77).
We shall show that the implication (i) = (z) holds. Suppose the contrary,

i.e. that there exists a non-absolutely H -closed topological inverse monoid S
with zero in the class of topological inverse semigroups, and for some cardinal

A" 22 every topological Brandt Aj-extension Bg*(S) is absolutely H -closed
in the class of topological inverse semigroups. Then there exist a topological
inverse semigroup T and a continuous homomorphism «into» h :S — T such
that h(S) is not a closed subsemigroup of T.

Let T, and T, be direct sum topologies on B;i*(S) and Bg*(T), respecti-
vely (see [5, p. 129]). Then (Bg*(S),’cS) and (Bg*(T),’cT) are topological inverse
semigroups, S and T' are homeomorphic to SmB and TaB’ for all a,B eI,
(see [5, p. 129]). We define the map h: Bg*(S) - BZ*(T) as follows: h(0) =0
and ft((a,s, B)) = (a,h(s),B) for all a,Bel,, seS\{0}. Obviously, the homo-
morphism h : (BY.(S),t5) = (B.(T),7;) is continuous and H(Bg*(S)) is not a
closed subsemigroup of (Bg* (T),t7). Therefore there exists a topological

Brandt k; -extension (Bg*(S),rS), which is not absolutely H -closed in the

class of topological inverse semigroups. The obtained contradiction implies the
statement of the theorem. ¢

Taking h: B;JL(S) — T is a topological isomorphism «into» in Lemma 1
and Theorem 2, we get

Theorem 5. For any cardinal A > 2, every topological Brandt A°-extension
Bg(S) of a H -closed topological inverse monoid S with zero in the class of

topological inverse semigroups is H -closed in the class of topological inverse
semigroups.

The proof of the next theorem is similar that of Theorem 4.

Theorem 6. Let S be a topological inverse monoid with zero. Then the

following conditions are equivalent:

(1) S is an H -closed semigroup in the class of topological inverse semi-
groups;

(3i) there exists a cardinal L >2 such that any topological Brandt A°-ex-
tension Bg(S) of the semigroup S is H -closed in the class of topologi-
cal inverse semigroups;

(iii) for each cardinal A > 2, every topological Brandt A’ -extension BR(S)
of the semigroup S s H -closed in the class of topological inverse se-
migroups.

Let (S,T) be a topological semigroup with zero 0y and A > . Let V(0y)

be an open neighborhood of the zero of the semigroup (S,7). For all o,p €

e I, we put
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V,(V(05) = By (H\{(o,5,7) |y € I, s.€ S\ V(0)}

and
Hy(V(0g)) = BY(S)\ {(v,s,B) [y € I,, s € S\ V(0g)}.
We define
U (V(0y) = [V, (VO0g)),  Ug 5 (V(05) ﬂ L(V(0g)
i=1 j=1
U’E‘lly ........ Oy (V(O )) _ 0t1 ..... Oy (V(OS)) ﬂ UB ..... B (V(OS )) ’
where al,...,an,ﬁl,...,ﬁm €l,, mneN.

Let Q(s) be a base of the topology 1t at the point s € S. Further, we de-
fine the following families

Q, ={U“ " (V(0g) | ay,...,a, € ,,ne N, V(04) € Q04)} U
U {(a, V(s),B) | V(s) € Q(s), se S\ {04}, o,Bel,},
Q, = {Uﬁl,---,Bm(V(OS)) | ByseeesB,, € L,meN,V(0g) € Q04)}U
U {(a, V(s),B) | V(s) € Qs), s € S\ {05}, a,Be L},
Q, ={Ug 5 (V(O0s) | oy, ey 0y By By € Iy mym € N, V(0g) €

.....

€ Q0 U{(a, V(5),B) | V(s) € Qs), s € S\ {0g}, o0,B e L, }.

Obviously, the conditions (BP1)—(BP3) [4] hold for the families Q , Q,
and Q. , and hence Q , Q, and Q, are the bases of topologies T, (S), T,(S)
and 71,(S) on the semigroup Bg (S), respectively.

Definition 4. Let S be a topological semigroup with zero 0. Then S is
called a left [right] 0 -bounded semigroup if for any open neighborhood U(0)
of zero there exists an open neighborhood V(0) such that V(0)-S < U(0)
[S-V(0)c U@)]. A left and right 0-bounded topological semigroup is called
0 -bounded.

Theorem 7. Every compact topological semigroup with zero is 0 -bounded.

Proof. Let S be a compact topological semigroup with zero 0 and
U(0) be an open neighborhood of 0. Since the multiplication in S is continu-

ous, for any s €S there exist open neighborhoods V(s) and V (0) of s and
0, respectively, such that V(s)V (0) c U(0) and V (0)V(s) c U(0). The com-

pactness of S implies that the open cover y ={V(s)|s € S} contains a finite
k

subcover y, = {V(sj) | S; € S,j= 1,...,k}. Put V(0) = N V, (0). Therefore, we
j=1

get
SV(0) =(V(sp)U...UV(s,)V(0) = V(s))V(0)U...U V(s,)V(0) < U(0)

and
V(0)S =V(O0)(V(s)U...UV(s,)) < V(0O)V(s)U...UV(0)V(s,) < U0). ¢

Proposition 6. Let A > ® and (S,1) be a topological semigroup with zero.
Then the semigroup (S,%) is left [right] 0-bounded if and only if (Bg(S),'cv(S))
[(B,[z(S),'ch(S))] is a topological semigroup.

Proof. (=) We consider only the case (Bg(S),'cv(S)). The proof of the

statement for the semigroup (Bg(S),'ch(S)) is similar.
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It is sufficient to consider the following cases.
1°. Let ab=c#0 in S and U(a)U(b) c U(c). If B # vy, then
(o, U(a), B)(v, U(b),8) = {0} < U™ (U(0))
for any ay,...,a, €I, and any open neighborhood U(0) of the zero 0, and
(o, U(a),B)(B, U(b),d) < (a,U(c),d).
2°. Let ab=0 in S and U(a)U(b) c U(0). If B # vy, then
(o, U(a), B)(y,U(b),8) = {0} < U™ (U(0))
and
(o, U(a), B)(B, U(b),8) < U= (U(0))
for any a4,...,a, €I, and any open neighborhood U(0) of the zero 0.

3° If V(0) and U(0) are open neighborhoods of zero in S such that
V(0)S < U(0), then U™ " (V(0))U**»(V(0)) < U™ **(U(0)).

4°. If V(a), V(0) and U(0) are open neighborhoods of a and zero in S
such that V(a)V(0) c U(0) and V(0)V(a) < U(0), then

(0, V(a), U P(V(0)) € U (U(0))
and
Ut (V0)(e, Via), B) € U (U(0)).

(<) Suppose the contrary, i.e. that (BQ(S),TU(S)) is a topological semi-
group and (S,%) is a non-left 0-bounded topological semigroup. Then there
exists an open neighborhood U(0) of zero in (S,7) such that V(0)S sZ U(0) for
any open neighborhood V(0) of the zero 0 in (S,%). Therefore for every open
neighborhood W(0) of zero in (S,1) and any a,...,a,,,B;,...,B. €, , m,keN,

which contradicts the assumption that (BQ(S),TU(S)) is a topological semi-

group. ¢
Proposition 7. Let A > ® and let (S,T) be a topological (inverse) semi-

group with zero. Then (Bg(S),’l:i(S)) 1s a topological (inverse) semigroup.

The proof of Proposition 7 is similar to the one of Proposition 6.
Proposition 2 [7] implies the following

Lemma 3. Let A2 o, Bg(S) and T be topological semigroups and
h: B;JL(S) — T be a continuous homomorphism such that h(B;z(S)) is a dense

subset in T. Then 0, = h(0) is the zero of the semigroup T.
Theorem 8. Let L > ® and (S,T) be an absolutely H -closed topological

(inverse) monoid with zero. Then (B;[z(S),'ci(S)) is an absolutely H -closed topo-
logical (inverse) semigroup.

P r o o f. Suppose the contrary, ie. that (Bg(S),'ci(S)) is not an absolute-
ly H -closed topological semigroup. Then there exists a continuous homomor-
phism h: BR(S) — T from BQ(S) into a topological semigroup T such that

h(Bg(S)) is not a closed subset in T. Without loss of generality we can sup-

pose that the set h(Bg(S)) is dense in T and h(Bg(S)) # T. Then there exists
x e h(B)(S))\ h(B)(S)) cT. By Lemma 3, h(0)=0, and hence x-0, =

34



=0, -ax=0,. Since T is a topological semigroup, for any open neighborhood
W(0,) of 0, in T there exist open neighborhoods V(0;) and U(0;) of 0, in
T and an open neighborhood V(x) of x in T such that V(OT)ﬁV(x) =0,
U0p)NV(x)=D, V(0;) c W), UWO;) < W(05), V(0;)-V(x) < U(0;), and
V(x)-V(0;) < U0p).
Since 0 e h'(U(0;)) and h™'(U(0;)) is an open subset in (B, (S),%,(S)),
By Lemma 1 the sets h(SaB) and h(Sys) are homeomorphic in T, and

hence are closed subsets of T for all a,B,v,6 € I, . Therefore at least one of
the following conditions holds:
(i) for some i, € {1,2,...,n}, the set Bio = h’l(V(x))ﬂ{(aiO,s, 7 |sest

Y € Ix} intersects infinitely many subsets SOL[3 ;

(#1) for some j, €{1,2,...,m}, the set B = i (V(x)N {(y,s,(xjo) |ses?t,
y € I, } intersects infinitely many subsets Sup-

Indeed, suppose that for any o € I, the set Bi0 intersects finitely many
subsets Saﬁ’ ie. Saﬁ ﬂSaiBi # @ only for i=1,2,...,n. By Lemma 1 the set
h(S, ) is closed in T and hence h(Sml[31 YU...UR(S, p ) is a closed subset of
T. Therefore x is not a limit point of the set h(Bg(S)) in the topological
space T. This contradicts the choice of a. Therefore the set Bio intersects in-
finitely many subsets S, for some i, € {1,2,...,n}.

Taking i, as in (), we define

Fio ={ye I, | there exists s € S such that (aio,s,y) € hil(V(x))}.

For any element Ugll’_‘_"";’z(V(OS)) of the base of the topology 71,(S) at ze-

.....

.....

and hence the set Fio is infinite. Since (aio,s,y) -(v,8,v) # (a,s,B), for a ¢
¢ {oy,...,a,}, Be{P;,....B,,} and i, € {1,2,...,n} we have
o Ust sk (VO09) L UG (V(0,)),
which contradicts the inclusion V(x) -V (0,) < U(0;).
Let j,€{1,2,...,m} be such that the set B® = h™}(V(x))N {(v,s,0;) | se
e St Yy € Ix} intersects infinitely many subsets Saﬁ. We define

ri = {v e I, | there exists s € S such that (y,s,ocjo) € hil(V(x))}.

For any element Ugll’_'_':’gl’cc(V(OS)) of the base of the topology 7T,(S) at

.....

.....
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S,, and hence the set '™ is infinite. Since (y,s,y)-(y,s,ocjo) # (B,s,a) for

a¢{o,...,o,}, Pe{B,....B,,} and j, € {1,2,...,m} we have

.....

which contradicts the inclusion V(0;)-V(x) < U(0,).
Therefore, the contradictions derived show that (Bg(S),’ci(S )) is an abso-

lutely H -closed topological (inverse) semigroup. ¢
Theorem 8 implies
Corollary 3. Let A > ® and let (S,T) be a compact topological (inverse)

monoid with zero. Then (Bg(S),'ci(S)) is an absolutely H -closed topological
(inverse) semigroup.

The proof of next Theorem is similar that of Theorem 8.
Theorem 9. Let A > o and let (S,T) be a left [right] 0 -bounded absolutely

H -closed topological monoid with zero. Then (Bg(S),'ch(S)) [(B,?(S),'CU(S))] 18
an absolutely H -closed topological semigroup.

Theorem 9 implies
Corollary 4. Let A > ® and let (S,T) be a compact topological (inverse)

monoid with zero. Then (B,[z(S),'ch(S)) and (Bg(S),'cv(S)) are absolutely H -

closed topological semigroups.
If in the proof of Theorem 8 we suppose that the homomorphism

h: BQ(S) — T is an embedding, then we get Theorem 10, and similarly Theo-

rem 11.
Theorem 10. Let A > ® and let (S,T) be a H -closed topological (inverse)

monoid with zero. Then (Bg(S),'ci(S)) is a H -closed topological (inverse) semi-

group.

Theorem 11. Let A > ® and let (S,T) be a left [right] 0-bounded H -
closed topological monoid with zero. Then (B,[z(S),'ch(S)) [(BQ(S),TU(S))] s a
H -closed topological semigroup.

A. D. Wallace in [14] proved that if S is a compact topological semigroup
and p is a closed congruence on S, then S /p is a compact topological semi-
group. As a consequence of this result we have that if I is a closed ideal of a
compact topological semigroup S, then S /I is a compact topological semi-
group. J. D. Lawson and B. L. Madison in [10] generalized this Wallace’s result
and showed that if S is a locally compact o -compact topological semigroup
and p is a closed congruence on S, then S /p is a topological semigroup. As
an immediate corollary of the Lawson — Madison Theorem, we have a topolo-
gical version of the Rees quotient semigroup: if S is a locally compact o -
compact topological semigroup and I is a closed ideal of S, then S/I is a
topological semigroup.

The next theorem is a generalization of the Wallace Theorem on the Rees
quotient semigroup.

Theorem 12. Let S be a topological semigroup and I be a compact ideal
in S.Then S /I is a topological semigroup.

Proof. Let n:S —> S /I be a natural homomorphism. By Proposition
2.1 [10] it is sufficient to prove that the map nxn:SxS > S/IxS/I is
quotient. We shall show that the map n:S — S /I is perfect. Since for any

@ eS/I the set n'(@) is compact in S, it is sufficient to prove that = is a
closed map. Let A be a closed subset in S. We remark that the restriction
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b |S\13 S\NI > (S/I)\ n(I) of the map n is a homeomorphism. Hence, if
ANI = then n(A) is a closed subset of S /I. Suppose that ANI # & and
n(A) is not a closed subset in S /I. Since the map = is quotient, nfl(n(A)) is

a nonclosed subset of S . But the set nfl(n(A)) is closed in S as a union of

the closed subset A and the compactum I, a contradiction. The obtained con-
tradiction implies that n is a closed map. Then by Theorem 3.7.7 [4] the map
nxm:SxS —>S/IxS/I is perfect and hence by Corollary 2.4.8 [4] is quo-

tient. Therefore S /I is a topological semigroup. ¢
In [9] O. Hryniv constructed an example of a locally compact metrizable
topological semigroup S with a closed ideal I such that S /I is not a topo-

logical semigroup. In our paper we construct an example of an absolutely H -
closed countable metrizable topological semigroup S with an absolutely H -
closed ideal I such that S /I is not a topological semigroup.

Example 1 [6]. Let N be the set of positive integers. Let {x,} be an in-
creasing sequence in N. Put N* = {0} U {% | n e N}. We define the semilattice
operation on N* as follows: ab = min{a,b}, for a,b € N*. Obviously, 0 is the
zero of N*. We put U,(0)={0}U {%k | k> n}, neN. A topology T on N* is
defined as follows:

a) all nonzero elements of N* are isolated points in N*;
b) B(0) ={U,(0)| n € N} is the base of the topology T at the point 0 € N*.

It is easy to see that (N*,T) is a countable linearly ordered o -compact
locally compact metrizable topological semilattice and if a;,,, > a;, +1 for any

k € N then (N*,1) is a non-compact semilattice. >

By Proposition 1[6] (N*,7) is an H -closed topological semilattice and
hence by Theorem 1 [6] the semilattice (N*,7) is an absolutely H -closed.

Let 0 ¢ N*. We extend the semilattice operation from N* to N' = N*UJ0

as follows: 0x = x0 = 00 = 0. We define the topological space N" to be a topo-

logical sum of the space (N*,7) and the single space 0.

Proposition 8. N is an absolutely H -closed metrizable topological semi-
lattice.

Theorem 13. Let L = o. Then (BY(N'),1,(N')) and (BY(N"),7,(N")) are
metrizable topological semigroups.

Proof. We consider only the case (BQ(N*),Th(N*)). In the case
(BY(N"),1,(N")) the proof is similar.
Obviously, the topological semilattice N is a zero-dimensional topological

space, i.e. there exists a base of N" which consists from clopen subsets. Hence

by the definition of the topology ’ch(ﬁ*) every non-zero element of the topo-

logical semigroup (BQ(N*),Th(ﬁI*)) has a base which contains clopen subsets.

.....

of the topology ’ch(ﬁl*) has an open complement in Bg(ﬁl*) and hence
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UBp---,Bm (0) is a closed subset of (BR(KT*),’:h(I\VT*)). Therefore the topological
space (BR(KT*),’:h(I\VT*)) is 0-dimensional and hence is regular. Since A = ®, the
definition of the base Q, implies that (Bg(ﬁ*),’th(ﬁ*)) is a second countable
space, and hence by Theorem 4.2.9 [4] the topological space (Bg(ﬁ*),’th(ﬁ*)) is
metrizable. ¢

The set J(N') = {0} U{(c,,0,B)|0e N',0,B € I, } is an ideal of BY(N'). By
Theorem 6 [8] the semigroup j(N*) with the induced topology <1, from
(BQ(N*),T}L(N*)) is an absolutely H -closed topological semigroup and hence is
a closed ideal of (Bg(ﬁ*),’th(N*)). Similarly we get that j(N*) with the in-
duced topology 7, from (Bg(ﬁ*),'tv(ﬁl*)) is an absolutely H -closed topological
semigroup and hence is a closed ideal of (BQ(N*),’CU(KT*)).

Obviously, the Rees quotient semigroup BQ(N*)/j(N*) is algebraically
isomorphic to the semigroup BR(N*).

Lemma 4. The topological semilattice (N*,t) is 0 -bounded if and only if
it is compact.
Proof. (=) Suppose there exists an increasing sequence {x,} in N

such that (N",1) is a 0-bounded non-compact topological semilattice. Then
there exists k, e N such that x,,, >a, +1 for all k>k,, keN. Then

Ui(O)N* = N*Ui(O) gz Uj(O) for any ,j € N, a contradiction. The obtained con-
tradiction implies the implication.

The implication (<= ) follows from Theorem 7. ¢

Lemma 4 implies

Theorem 14. Let L > ® and {x,} be an increasing sequence in N such

that a;,; > x;, +1 for any k € N and define the topological semigroup (N, 1)
as above. Then the semigroup operations 1in (Bg(N*),’ch(N*)) and
(B)(N"),7,(N")) are discontinuous.

Theorem 15. Let L > o and {x,} be an increasing sequence in N such

that x,,, >x, +1 for any k € N and define the topological semigroup (N*,71)
as above. Then the topological Rees quotient semigroups (BR(ﬁT*),Th(ﬁ*))/j(N*)
and (BQ(N*),TU(KI*))/j(f\VT*) are not topological semigroups.

Proof. We consider only the case (BQ(N*),Th(N*))/j(ﬁ*). The proof

of the statement for the semigroup (BQ(N*),TU(N*))/j(N*) is similar.

At first we determine a base of the topology of the quotient space
(BQ(N*),Th(N*))/j(N*). Since for any n € N the point % is isolated in the
topological space (N*,1), Proposition 2.4.3 [4] implies that any non-zero ele-

ment of the semigroup (Bg(ﬁ*),'th(ﬁ*))/ j(ﬁl*) is isolated.
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By @ LN We denote the set of maps from I, into the set of positive inte-

gers N. Let ne N and let U,(0) be the set defined in Example 1. We define
M, =N\U,(0) for any n € N. For all ¢,,...,¢, € d)Ik’N and all a,,...,0, €1, ,

s ke
ap,0p _ 0 .
ke N we put M(Ply--"q’k =B, (N )\(iUlygk(y,M(Pi(y),ai)). Proposition 2.4.3 [4]

implies that the family B(0)= {M(‘;llg: loy,.,ap, €L, @y, @, € Dy N
k € N} is a base at zero of the topology of the space (Bg(ﬁ*),'ch(ﬁ*))/j(ﬁl*).
Since the topological semigroup (N",7) is not compact, there exists n, €
e N such that N'U,(0) = U, (0)N" & U, (0) for all ke N. We consider y, e
€ CDI}UN such that y,(y) =n, for all y € I, and fix a, € I, . Obviously, M$g S

€ B(0). We remark that (y,N,B)(B, U, (0)\ {0}, &) = (v, N(U,(0) \ {0}), ) &
Q(y,Uno(O),a) for all o,B,y €I, and all (peCDI}“N. Therefore, for every

Op,..., 0 € I, and every Ppes ;€ @Ik’N, where jeN, we have
Oy O p O ey 0L g . . . .
M<p1 o Mq)1 0 ¢ Mwo’ and hence the semigroup operation in the semigroup
..... ; e

(Bg(ﬁ*),Th(N*))/ j(ﬁl*) is discontinuous at zero. ¢
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nPo A’ -PO3LUMPEHHSI BPAHATA HAMIBIPYN 3 HYNIEM

Beodumwes A’ -poswupenus Bpandma Bg(S) Hanigepynu S 3 HYyaem i 8CMAHOB.AEHO
Oesaxi anzedpaiuni eracmusocmi nanisepynu S, axi sbepieatomses naniezpynoro B (S) .
Taxosxc 8ederno monoaoziune A° - poswupenus Bpandma mononoziunoi nanigzpynu S 3
HYAeM T 8CTMAHOBAEHO U020 TMONOAOIUHT 8AACTNMUBOCTNT 8 3AALHCHOCMT 810 MONOA0TUHOT

Hanigepynu S . 3okpema, 0o8edero, U0 MONonoziuHe Al -poswuperus Bpandma (abco-

aomuo) H -3amxHenHoi monoaoziunoi iHeepcHol Hanigepynu S € (abcoaromno) H -3a-
MKHEHOM0 HANIBZPYNOI0 Y KAACT MON0A0IHHUX TH8epcHUX Hanigepyn. ITo6ydosaro mono-

N0211 HA HaNieepyni Bg(S ), axi 30epizaromsb abcoatomuy H -zamxHenicms i H -3amrHe-
Hicmab. 3a 00NOMO2010 MON0A02IuH020 AL -po3wuperns Bpandma nobydosaro npuraad
abcoaromuo H -3amkHeHOT mMempu3osHol i1H8epCHOT MOnoa02iuHoT Hanigepynu S 3 abco-

amomuo H -zamrxnenum idearom I maxoi, wo gaxmop-nanigepyna Pica S /I He € mo-
MOA0IUHOI0 HANIB2ZPYTNOTO.

0 1" -PACLUMPEHUSX BPAHATA MONYIPYMN C HYNEM

0 0 ..
Bsodumcesa A° -pacwupenue Bpandma B, (S) moayzpynnovl S ¢ HYsEM U YCMAHOBACHDL
HeKOmopble anzedpauteckue ceolicmsa noAyzpynnvl S, KOmMopsvle COXPAHAIOMC NOAY-
2pynnou BQ(S). Taxoce egedeno monosozuueckoe A’ -pacwupenue Bpandma monoano-

2uueckol noayepynnst S ¢ HYAEM U YCMAHOBAEHO €20 MONoA0ZUHEeCKUe CEOUCEA 8 3a-
gucumocmu om monoaozuteckoli noayzpynnsvt S . B wacmuocmu, dokazarno, ¥mo mono-
aoeuueckoe MO -pacwuperue Bpandma (abcoatomuo) H -3amKHymMoU monosozuueckol
ungepcHol mnoayezpynnst S ecmdv (abcoatomuo) H -3amxunymas noayzpynna 8 kaacce
MONOA0ZUUECKUX UHBEPCHBLX noayepynn. ITocmpoeno monosozuu Ha BQ(S), Komopbwle
coxparaiom abcoaromuyro H -zamxnymocms u H - 3amxunymocms. C nomowpro KoH-
empyxyuu monoaozuueckozo A’ -pacwupenus Bpandma nocmpoen npumep aGCos0mMHO
H -3amxnymotl mempu3syemoti uH8epCcHOU monosozuueckoti noayzpynns. S ¢ abcosrom-
Ho H -3amxnymouim udearom I maxoid, ymo axmop-noaryepynna Pucca S /I ne ae-
Aslemcest MONOoA0ULeCKOU NoAY2PYNNOU.
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