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ON BRANDT λ0 -EXTENSIONS OF SEMIGROUPS WITH ZERO 
 

We introduce the Brandt 0λ -extension 0 ( )B Sλ  of a semigroup S  with zero and es-

tablish some algebraic properties of the semigroup 0 ( )B Sλ  with respect to the se-

migroup S . Also we introduce the topological Brandt 0λ -extension of a topologi-
cal semigroup S  with zero and study its topological properties with respect to the 

topological semigroup S . In particular we show that any topological Brandt 0λ -
extension of an (absolutely) H -closed topological inverse semigroup S  is (absolu-
tely) H -closed in the class of topological inverse semigroups. Also we construct to-

pologies on 0 ( )B Sλ  which preserve the absolute H -closedness and H -closedness. 

Using the construction of topological Brandt 0λ -extensions of topological semi-
groups we give an example of absolutely H -closed metrizable inverse topological 
semigroup S  with an absolutely H -closed ideal I  such that /S I  is not a topolo-
gical semigroup.  

 
Introductions and preliminaries. In this paper all spaces are Hausdorff. 

A topological (inverse) semigroup is a topological space together with a con-
tinuous multiplication (and an inversion, respectively). Further we follow the 
terminology of [1, 2, 4]. If S  is a semigroup, then by ( )E S  we denote the 

band (the subset of idempotents) of S , and by 1S  [ 0S ] we denote the semi-
group S  with the adjoined unit [zero] (see [2]). By ω  we denote the first infi-
nite ordinal. If Y  is a subspace of a topological space X  and A Y⊆ , then by 

cl ( )Y A  we denote the topological closure of A  in Y . 

Let S  be a semigroup with zero and Iλ  be a set of cardinality 2λ ≥ . On 

the set ( ) 0B S I S Iλ λ λ= × ×  { }  we define the semigroup operation as follows 

 
( , , ), if ,

( , , ) ( , , )
0, if ,

ab
a b

α δ β = γα β ⋅ γ δ =  β ≠ γ
 

and ( , , ) 0 0 ( , , ) 0 0 0a aα β ⋅ = ⋅ α β = ⋅ = , for all , , , Iλα β γ δ ∈  and ,a b S∈ . If S =  
1S=  then the semigroup ( )B Sλ  is called the Brandt λ -extension of the semi-

group S  [7]. Obviously, 0 ( ,0 , ) | 0 is the zero of S S S= α β{ } { }  is an ideal 

of ( )B Sλ . We put 0 ( ) ( ) /B S B Sλ λ=   and we shall call 0 ( )B Sλ  the Brandt 0λ -

extension of the semigroup S  with zero. Further, if A S⊆  then we shall de-

note ( , , ) |A s s Aαβ = α β ∈{ }  if A  does not contain zero, and ( , , ) |A s sαβ = α β ∈{  

\ 0 0A∈ { } { }}  if 0 A∈ , for , Iλα β ∈ . If   is a trivial semigroup (i. e.   con-

tains only one element), then by 0  we denote the semigroup   with the ad-

joined zero. Obviously, for any 2λ ≥  the Brandt 0λ -extension of the semi-

group 0  is isomorphic to the semigroup of I Iλ λ× -matrix units and any 

Brandt 0λ -extension of a semigroup with zero contains the semigroup of 
I Iλ λ× -matrix units. Further by Bλ  we shall denote the semigroup of I Iλ λ× -

matrix units and by 0 (1)Bλ  the subsemigroup of I Iλ λ× -matrix units of the 

Brandt 0λ -extension of a monoid S  with zero. 
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In our paper we establish some algebraic properties of the semigroup 
0 ( )B Sλ  with respect to a semigroup S . Also we introduce a topological Brandt 
0λ -extension of a topological semigroup S  with zero and study its topological 

properties with respect to the topological semigroup S . In particular, we 

show that any topological Brandt 0λ -extension of an (absolutely) H -closed 
topological inverse semigroup S  is (absolutely) H -closed in the class of topo-

logical inverse semigroups. Also we construct topologies on 0 ( )B Sλ  which pre-

serve the absolute H -closedness and H -closedness. Using the construction of 

topological Brandt 0λ -extensions of topological semigroups we give an exam-
ple of an absolutely H -closed metrizable inverse topological semigroup S  
with an absolutely H -closed ideal I  such that /S I  is not a topological semi-
group. 

1. Algebraic properties of 0 ( )B Sλ . This section contains algebraic proper-

ties of the semigroup 0 ( )B Sλ  with respect to the semigroup S . We remark 

that a non-zero element ( , , )eα β  of the semigroup 0 ( )B Sλ  is idempotent if and 

only if e  is an idempotent in S  and α = β . Obviously, a non-zero idempotent 

( , , )eα α  of the semigroup 0 ( )B Sλ  is primitive if and only if e  is a primitive 

idempotent of S . 
Proposition 1. Let S  be a semigroup with zero. Then the following con-

clusions hold: 

(i) S  is regular if and only if 0 ( )B Sλ  is regular; 

(ii) S  is orthodox if and only if 0 ( )B Sλ  is orthodox; 

(iii) S  is inverse if and only if 0 ( )B Sλ  is inverse; 

(iv) S  is 0 -simple if and only if 0 ( )B Sλ  is 0 -simple; 

(v) S  is completely 0 -simple if and only if 0 ( )B Sλ  is completely 

0 -simple. 
P r o o f. Statement (i) follows from the fact that an element ( , , )xα β  of 

0 ( )B Sλ  is regular if and only if x  is regular in S . 

(ii) If T  is a subsemigroup of S , then 0 ( )B Tλ  as a subset of 0 ( )B Sλ  is a 

subsemigroup of 0 ( )B Sλ . Therefore if S  is an orthodox semigroup then so is 
0 ( )B Sλ . Conversely, suppose that 0 ( )B Sλ  be an orthodox semigroup and e  and 

f  are idempotents of S . Then the element ( , , )( , , ) ( , , )e f efα α α α = α α  is a 

non-zero idempotent of 0 ( )B Sλ  if 0ef ≠ . Therefore ef  is an idempotent of S  

and the semigroup S  is orthodox. 
Statement (iii) follows from the fact that the idempotents of the semi-

group S  commute if and only if the idempotents of the semigroup 0 ( )B Sλ  

commute. 
(iv) Suppose the contrary, i. e. there exists a 0 -simple semigroup such 

that the semigroup 0 ( )B Sλ  contains a non-zero proper ideal I . Then there ex-

ist , Iλα β ∈  and a non-empty subset 0A ≠ { }  of S  such that A Iαβ ⊆ . Since 

S I Iαα ⊆  and S A Sαα αβ αβ⊆ , we have S A Aαα αβ αβ⊆ . Therefore, A  is a non-

zero proper ideal of S  and we obtain a contradiction. Since 0 ( )B Jλ  is a non-
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zero proper ideal in 0 ( )B Sλ  where J  is a non-zero proper ideal of S , we get 

that if the semigroup 0 ( )B Sλ  is 0 -simple then so is S . 

Since every completely 0 -simple semigroup contains a primitive idempo-
tent, statement (iv) implies (v). ◊ 

A semigroup homomorphism :h S T→  is called annihilating if there ex-
ists c T∈  such that ( )h a c=  for all a S∈ . 

A semigroup S  is called congruence-free if it has only two congruences: 
identical and universal [11]. Obviously, a semigroup S  is congruence-free if 
and only if any homomorphism h  of S  into an arbitrary semigroup T  is an 
isomorphism «into» or is annihilating. 

Theorem 1. A semigroup S  with zero is congruence-free if and only if 
0 ( )B Sλ  is congruence-free for all 2λ ≥ . 

P r o o f. ( ⇒ ) Suppose the contrary, i. e. let there exists a congruence-

free semigroup S  with zero such that the semigroup 0 ( )B Sλ  is not congru-

ence-free for some 2λ ≥ . Then there exists a semigroup homomorphism 
0: ( )g B S Tλ →  into a semigroup T  which is neither an isomorphism nor anni-

hilating. Therefore there exist 0, ( )x y B Sλ∈  such that x y≠  and ( ) ( )g x g y= . 

We consider the following cases. 
1°. Let 0x = , ( , , )y s= α β  for some \ 0s S∈ { }  and , Iλα β ∈ . Let ( , , )tγ δ  

be any nonzero element of 0 ( )B Sλ . Since the semigroup S  is congruence-free 

and hence is 0 -simple, there exist , \ 0a b S∈ { }  such that t asb=  and there-
fore we get (( , , )) (( , , ) ( , , ) ( , , )) (( , , )) (( , , ))g t g a s b g a g sγ δ = γ α ⋅ α β ⋅ β δ = γ α ⋅ α β ⋅  

(( , , )) (( , , )) (0) (( , , )) (( , , ) 0 ( , , )) (0)g b g a g g b g a b g⋅ β δ = γ α ⋅ ⋅ β δ = γ α ⋅ ⋅ β δ =  for any 

nonzero element ( , , )tγ δ  of 0 ( )B Sλ . 

2°. Let ( , , )x s= α β , ( , , )y t= α β  for some , Iλα β ∈  and , \ 0s t S∈ { }  such 

that s t≠ . Since the semigroup S  is congruence-free, the restriction homo-
morphism :Sg S T→  is annihilating and therefore ( ) ( ) (0)g x g y g= = . Then 

case 1° implies that g  is an annihilating homomorphism. 

3°. Let ( , , )x s= α β , ( , , )y t= γ δ  for some , \ 0s t S∈ { }  and , Iλα β ∈  

such that α ≠ γ  or β ≠ δ . Since the semigroup S  is 0 -simple, there exist 
, \ 0a b S∈ { }  such that s atb=  and we have (( , , )) (( , , ))g s g atbα β = α β =  
 (( , , ) ( , , ) ( , , ))  (( , , )) (( , , )) (( , , ))  (( , , ))g a t b g a g t g b g a= α γ ⋅ γ δ ⋅ δ β = α γ ⋅ γ δ ⋅ δ β = α γ ⋅
(( , , )) (( , , )) (( , , ) ( , , ) ( , , )) (0)g s g b g a s b g⋅ α β ⋅ δ β = α γ ⋅ α β ⋅ δ β = . Therefore by case 1° 

the homomorphism g  is annihilating. We thus showed that in all three cases 

1°–3° the homomorphism g  is annihilating. The derived contradiction shows, 

that 0 ( )B Sλ  is congruence-free and justifies the implication. 

( ⇐ ) Suppose there exists a non-congruence-free semigroup S  with zero 

such that 0 ( )B Sλ  is congruence-free semigroup for some 2λ ≥ . Then there ex-

ists a semigroup T  with zero and a surjective homomorphism :h S T→  such 
that ( ) ( )h s h t=  for some different ,s t S∈ . We extend the homomorphism h  

up to homomorphism 0 0: ( ) ( )h B S B Tλ λ→  by the formulae (( , , ))h sα β =  

( , ( ), )h s= α β  and (0 ) 0S Th = , where 0S  and 0T  are the zeros of the semigroups 
0 ( )B Sλ  and 0 ( )B Tλ , respectively. Therefore, we get (( , , )) (( , , ))h s h tα β = α β  , 

which contradicts the assumption that the semigroup 0 ( )B Sλ  is congruence-
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free. The obtained contradiction implies that S  is a congruence-free semi-
group. ◊ 

Proposition 2. Let S  be a semigroup with zero. Let 0: ( )h B S Tλ →  be a 

homomorphism such that (( , , )) (0)h x hα β =  for some x S∈ , , Iλα β ∈ . Then 

(( , , )) (0)h y hγ δ =  for all y SxS∈ , , Iλγ δ ∈ . 

P r o o f. Assume that y SxS∈ . Then y axb=  for some ,a b S∈ . There-

fore (( , , )) (( , , ) ( , , ) ( , , )) (( , , )) (( , , )) (( , , ))h y h a x b h a h x h bγ δ = γ α ⋅ α β ⋅ β δ = γ α ⋅ α β ⋅ β δ =  

(( , , )) (0) (( , , )) (( , , ) 0 ( , , )) (0)h a h h b h a b h= γ α ⋅ ⋅ β δ = γ α ⋅ ⋅ β δ = . ◊ 

Corollary 1. Let S  be a monoid with zero. A homomorphism 0: ( )h B Sλ →  

T→  is annihilating if and only if the homomorphism 0| : (1)Bh B B T
λ λ λ= →  

is annihilating. 

Proposition 3. Let S  be a monoid with zero. Let 0: ( )h B S Tλ →  be a ho-

momorphism and 1 1 2 2(( , , )) (( , , ))h a h bα β = α β  for some ,a b S∈ , 1 2 1 2, , ,α α β β ∈ 

Iλ∈ . If 1 2α ≠ α  or 1 2β ≠ β  then 1 1(( , , )) (0)h a hα β = . 

P r o o f. Assume that 1 2α ≠ α . Then 1 1 1 1 1 1(( , , )) (( ,1, )( , , ))h a h aα β = α α α β =  

1 1 1 1 1 1 2 2 1 1 2 2(( ,1, )) (( , , )) (( ,1, )) (( , , )) (( ,1, ) ( , , ))h h a h h b h b= α α ⋅ α β = α α ⋅ α β = α α ⋅ α β =  

(0)h= . The proof of the case 1 2β ≠ β  is similar. ◊ 
Proposition 4. Let 2λ ≥ , S  be a monoid with zero and T  be a semigroup. 

Let 0: ( )h B S Tλ →  be a homomorphism, A  and B  be disjoint subsets of 
0( ( ))h B Sλ . If the sets A  and B  intersect at least two different subsets of the 

type ( )h Sαβ , , Iλα β ∈ , then (0)h A B∈ ⋅  or (0)h B A∈ ⋅ . 

P r o o f. The cases (0)h A∈ , or (0)h B∈  are trivial. Otherwise, for i =  

1,2,3, 4=  we fix ,i i Iλα β ∈  such that 
1 1

( )A h Sα β ≠ ∅ , 
2 2

( )A h Sα β ≠ ∅ , 

3 3
( )B h Sα β ≠ ∅  and 

4 4
( )B h Sα β ≠ ∅ . By Proposition 3 the sets 

1 1
( )\ (0)h S hα β  

and 
2 2

( ) \ (0)h S hα β  are disjoint in 0( ( ))h B Sλ , hence 1 2α ≠ α  or 1 2β ≠ β . Let 

1 2 3 4, , ,x x x x  be elements of the semigroup S  such that 1 1 1(( , , ))h xα β , 

2 2 2(( , , ))h x Aα β ∈  and 3 3 3(( , , ))h xα β , 4 4 4(( , , ))h x Bα β ∈ . If 1 2α ≠ α , then 

1 3α ≠ β  or 2 3α ≠ β , and hence 3 3 3 1 1 1 3 3 3(0) (( , , ) ( , , )) (( , , ))h h x x h x= α β ⋅ α β = α β ⋅  

1 1 1(( , , ))h x B A⋅ α β ∈ ⋅ , or 3 3 3 2 2 2 3 3 3(0) (( , , ) ( , , )) (( , , ))h h x x h x= α β ⋅ α β = α β ⋅  

2 2 2(( , , ))h x B A⋅ α β ∈ ⋅ . If 1 2β ≠ β  then 1 3β ≠ α  or 2 3β ≠ α , and hence (0)h =  

1 1 1 3 3 3 1 1 1 3 3 3(( , , ) ( , , )) (( , , )) (( , , ))h x x h x h x A B= α β ⋅ α β = α β ⋅ α β ∈ ⋅ , or (0)h =  

2 2 2 3 3 3 2 2 2 3 3 3(( , , ) ( , , )) (( , , )) (( , , ))h x x h x h x A B= α β ⋅ α β = α β ⋅ α β ∈ ⋅ . ◊ 

2. Topological Brandt 0λ -extensions of topological semigroups with ze-
ro. Further, by S  we denote some class of topological semigroups with zero. 

Definition 1. Let λ  be a cardinal 2≥ , and ( , )S ∈ S . Let B  be a topo-

logy on 0 ( )B Sλ  such that 

a) 0( ( ), )BB Sλ ∈ S ;  b) ( , , ) 0|B Sα α = { }  for some Iλα ∈ . 

Then 0( ( ), )BB Sλ τ  is called a topological Brandt 0λ -extension of ( , )S   in S . If 

S  coincides with the class of all topological semigroups, then 0( ( ), )BB Sλ τ  is 

called a topological Brandt 0λ -extension of ( , )S  . 
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Lemma 1. Let 2λ ≥  and 0 ( )B Sλ  be a topological 0λ -extension of a topo-

logical monoid S  with zero. Let T  be a topological semigroup and 0: ( )h B Sλ →  

T→  be a continuous homomorphism. Then the sets ( )h Aαβ  and ( )h Aγδ  are 

homeomorphic in T  for all , , , Iλα β γ δ ∈ , and all A S⊆ . 

P r o o f. If h  is an annihilating homomorphism, then the statement of 
the Lemma is trivial. Otherwise, we fix arbitrary , , , Iλα β γ δ ∈  and define the 

maps : T Tγδ
αβϕ →  and : T Tαβ

γδϕ →  by the formulae ( ) (( ,1, ))s h sγδ
αβϕ = γ α ⋅ ⋅  

(( ,1, ))h⋅ β δ  and ( ) (( ,1, )) (( ,1, ))s h s hαβ
γδϕ = α γ ⋅ ⋅ δ β , s T∈ . Obviously 

( ( (( , , )))) (( , , ))h x h xαβ γδ
γδ αβϕ ϕ α β = α β  and ( ( (( , , )))) (( , , ))h x h xγδ αβ

αβ γδϕ ϕ γ δ = γ δ , for all 

, , , Iλα β γ δ ∈ , 1x S∈ , and hence 1| ( ) |A Aαβ αβ

γδ αβ −
αβ γδϕ = ϕ . Since the maps γδ

αβϕ  

and αβ
γδϕ  are continuous on T , the map ( )| : ( ) ( )h A h A h A

αβ

αβ
γδ αβ γδϕ →  is a ho-

meomorphism. ◊ 
Proposition 5. Let 2λ ≥  and let 0 ( )B Sλ  be a topological 0λ -extension of a 

topological monoid S  with zero. Let T  be a topological semigroup and 
0: ( )h B S Tλ →  be a continuous homomorphism. Assume that a set 0( ( ))A h B Sλ⊆  

is such that A  intersects at least two different subsets of the type ( )h Sαβ . 

Then (0)h A A∈ ⋅ . 
P r o o f. The case (0)h A∈  is trivial. Assume that (0)h A∉ , A   

1 2
( )h Sα α ≠ ∅  and 

1 2
( )A h Sβ β ≠ ∅  for some 1 2 1 2, , , Iλα α β β ∈ , i. e. there ex-

ist 1,x y S∈  such that 1 2(( , , ))h x Aα α ∈  and 1 2(( , , ))h y Aβ β ∈ . If 1 2α ≠ α  or 

1 2β ≠ β , then 1 2 1 2(0) (( , , )) (( , , ))h h x h x A A= α α ⋅ α α ∈ ⋅  or 1 2(0) (( , , ))h h y= β β ⋅  

1 2(( , , ))h y A A⋅ β β ∈ ⋅ . If 1 2α = α  and 1 2β = β , then 2 1α ≠ β , and hence (0)h =  

1 2 1 2(( , , )) (( , , ))h x h y A A= α α ⋅ β β ∈ ⋅ . ◊ 

Lemma 2. Let 2λ ≥ , 0 ( )B Sλ  and T  be topological semigroups and 
0: ( )h B S Tλ →  be a continuous homomorphism. Let 0( ( ))h B Sλ  be a dense sub-

semigroup of T  and ( )h Sαβ  be a closed subset in T  for some , Iλα β ∈ . Then 

(0)a a h⋅ =  for all 0\ ( ( ))a T h B Sλ∈ , and (0)h  is the zero of T . 

P r o o f. Since 0( ( ))h B Sλ  is a dense subsemigroup of T , by Proposi-

tion 2 [7], (0)h  is the zero of T . Assume that (0)a a b h⋅ = ≠  for some a ∈  
0\ ( ( ))T h B Sλ∈ . Then for any open neighborhood ( ) (0)U b h  there exists an 

open neighborhood  ( ) (0)V a h  such that ( ) ( ) ( )V a V a U b⋅ ⊆ . By Lemma 1 

the set ( )h Sγδ  is closed for each , Iλγ δ ∈ . Therefore the neighborhood ( )V a  

intersects infinitely many sets of the type ( )h Sαβ , , Iλα β ∈ . Then by Proposi-

tion 5 we have (0) ( ) ( ) ( )h V a V a U b∈ ⋅ ⊆ , a contradiction with the choice of 
( )U b . ◊ 

Theorem 2. Let S  be a topological inverse monoid with zero. Let 2λ ≥ , 
0 ( )B Sλ  and T  be topological inverse semigroups, 0: ( )h B S Tλ →  be a continuous 

homomorphism such that the set ( )h Sαβ  is closed in T  for some , Iλα β ∈ . 

Then 0( ( ))h B Sλ  is a closed subsemigroup of T . 
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P r o o f. In the case 2 ≤ λ < ω  the statement of the Theorem follows 
from Lemma 1. 

Let λ ≥ ω . We denote 0cl ( ( ( )))TG h B Sλ= . By Proposition II.2 [3], G  is a 

topological inverse semigroup. Let 0\ ( ( ))b G h B Sλ∈ . Then by Lemma 1, 
1, \ ( )b b G E G− ∈ . We remark that 1 (0)b b h−⋅ ≠  and 1 (0)b b h− ⋅ ≠ . Indeed, if 

we assume that 1 (0)b b h−⋅ =  or 1 (0)b b h− ⋅ = , then since (0)h  is the zero of 

G , we would get 1 (0) (0)b b b b h b h−= ⋅ ⋅ = ⋅ =  or  

(0)h= , which would contradict the inclusion 0\ ( ( ))b G h B Sλ∈ . 

Therefore there exist 0, ( ) ( ( ( )))e f E G E h B Sλ∈ = , such that 1b b e−⋅ =  and 
1b b f− ⋅ = . We consider first the case e f≠ . Let ( ) (0)W e h  and ( ) (0)W f h  

be disjoint open neighborhood s of e  and f  in T , respectively. Then there 

exist disjoint open neighborhood s ( ) (0)U b h  and 1( ) (0)U b h−   in T  such 

that 1( ) ( ) ( )U b U b W e−⋅ ⊆  and 1( ) ( ) ( )U b U b W f− ⋅ ⊆ . By Lemma 1 the set 

( )h Sαβ  is closed in T  for each , Iα β ∈ λ , and hence the sets ( )U b  and 1( )U b−  

intersect infinitely many different sets of the type ( ) \ (0)h S hγδ , , Iγ δ ∈ λ . 

Thus by Proposition 5 we get 1(0) ( ) ( ) ( )h U b U b W e−∈ ⋅ ⊆  or 1(0) ( )h U b−∈ ⋅  
( ) ( )U b W f⋅ ⊆ , a contradiction with the choice of the neighborhoods ( )W e  and 

( )W f . In the case e f=  we similarly derive a contradiction. The obtained 

contradictions imply the statement of the theorem. ◊ 
Definition 2 [12]. Let S  be a class of topological semigroups. A semi-

group S ∈ S  is called H -closed in S , if S  is a closed subsemigroup of any 
topological semigroup T ∈ S  which contains S  as subsemigroup. If S  coinci-
des with the class of all topological semigroups, then the semigroup S  is 
called H -closed. 

Definition 3 [13]. Let S  be a class of topological semigroups. A topologi-
cal semigroup S ∈ S  is called absolutely H -closed in the class S  if any con-
tinuous homomorphic image of S  into T ∈ S  is H -closed in S . If S  coin-
cides with the class of all topological semigroups, then the semigroup S  is 
called absolutely H -closed. 

Lemma 1 and Theorem 2 imply 

Theorem 3. For any cardinal 2λ ≥ , every topological Brandt 0λ -extension 
0 ( )B Sλ  of an absolutely H -closed topological inverse monoid S  with zero in 

the class of topological inverse semigroups, is absolutely H -closed in the class 
of topological inverse semigroups. 

Corollary 2. For any cardinal 2λ ≥ , every topological Brandt 0λ -exten-

sion 0 ( )B Sλ  of a compact topological inverse semigroup S  with zero in the 

class of topological inverse semigroups, is absolutely H -closed in the class of 
topological inverse semigroups. 

Theorem 4. Let S  be a topological inverse monoid with zero. Then the 
following conditions are equivalent: 

(i) S  is an absolutely H -closed semigroup in the class of topological in-
verse semigroups; 

(ii) there exists a cardinal 2λ ≥  such that any topological Brandt 0λ -ex-

tension 0 ( )B Sλ  of the semigroup S  is absolutely H -closed in the class 

of topological inverse semigroups; 
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(iii) for each cardinal 2λ ≥ , every topological Brandt 0λ -extension 0 ( )B Sλ  

of the semigroup S  is absolutely H -closed in the class of topological 
inverse semigroups. 

P r o o f. The implication (iii) ⇒ (ii) is trivial, and Theorem 3 claims the 
implications (i) ⇒ (ii) and (i) ⇒ (iii). 

We shall show that the implication (ii) ⇒ (i) holds. Suppose the contrary, 
i. e. that there exists a non-absolutely H -closed topological inverse monoid S  
with zero in the class of topological inverse semigroups, and for some cardinal 

2∗λ ≥  every topological Brandt 0
∗λ -extension 0 ( )B S∗λ

 is absolutely H -closed 

in the class of topological inverse semigroups. Then there exist a topological 
inverse semigroup T  and a continuous homomorphism «into» :h S T→  such 
that ( )h S  is not a closed subsemigroup of T . 

Let S  and T  be direct sum topologies on 0 ( )B S∗λ
 and 0 ( )B T∗λ

, respecti-

vely (see [5, p. 129]). Then 0( ( ), )SB S∗λ
  and 0( ( ), )TB T∗λ

  are topological inverse 

semigroups, S  and 1T  are homeomorphic to Sαβ  and Tαβ , for all , Iλα β ∈  

(see [5, p. 129]). We define the map 0 0: ( ) ( )h B S B T∗ ∗λ λ
→  as follows: (0) 0h =  

and (( , , )) ( , ( ), )h s h sα β = α β  for all , Iλα β ∈ , \ 0s S∈ { } . Obviously, the homo-

morphism 0 0: ( ( ), ) ( ( ), )S Th B S B T∗ ∗λ λ
→    is continuous and 0( ( ))h B S∗λ

  is not a 

closed subsemigroup of ( )0( , )TB T∗λ
 . Therefore there exists a topological 

Brandt 0
∗λ -extension 0( ( ), )SB S∗λ

τ , which is not absolutely H -closed in the 

class of topological inverse semigroups. The obtained contradiction implies the 
statement of the theorem. ◊ 

Taking 0: ( )h B S Tλ →  is a topological isomorphism «into» in Lemma 1 

and Theorem 2, we get 

Theorem 5. For any cardinal 2λ ≥ , every topological Brandt 0λ -extension 
0 ( )B Sλ  of a H -closed topological inverse monoid S  with zero in the class of 

topological inverse semigroups is H -closed in the class of topological inverse 
semigroups. 

The proof of the next theorem is similar that of Theorem 4. 

Theorem 6. Let S  be a topological inverse monoid with zero. Then the 
following conditions are equivalent: 

(i) S  is an H -closed semigroup in the class of topological inverse semi-
groups; 

(ii) there exists a cardinal 2λ ≥  such that any topological Brandt 0λ -ex-

tension 0 ( )B Sλ  of the semigroup S  is H -closed in the class of topologi-

cal inverse semigroups; 

(iii) for each cardinal 2λ ≥ , every topological Brandt 0λ -extension 0 ( )B Sλ  

of the semigroup S  is H -closed in the class of topological inverse se-
migroups. 

Let ( , )S   be a topological semigroup with zero 0S  and λ ω . Let (0 )SV  

be an open neighborhood  of the zero of the semigroup ( , )S  . For all ,α β ∈ 

Iλ∈  we put  
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0( (0 )) ( ) \ ( , , ) | ,  \ (0 )S SV V B S s I s S Vα λ λ= α γ γ ∈ ∈{ }  

and 
0( (0 )) ( ) \ ( , , ) | ,  \ (0 )S SH V B S s I s S Vβ λ λ= γ β γ ∈ ∈{ } . 

We define 

 1
1

, ,
, ,

1 1

( (0 )) ( (0 )),      ( (0 )) ( (0 ))n
i m j

n m

S S S S
i j

U V V V U V H Vα α
α β β β

= =

= =
  , 

 1 1
11

, , , ,
, ,, , ( (0 )) ( (0 )) ( (0 ))n n

mm S S SU V U V U Vα α α α
β ββ β = 
  , 

where 1 1, , , , ,n m Iλα α β β ∈  , ,m n ∈  . 

Let ( )sΩ  be a base of the topology   at the point s S∈ . Further, we de-
fine the following families 

 1 , ,
1( (0 )) | , , , , (0 ) (0 )n

v S n S SU V I n Vα α
λΩ = α α ∈ ∈ ∈ Ω  { }  

 ( , ( ), ) | ( ) ( ),  \ 0 ,  ,SV s V s s s S Iλα β ∈ Ω ∈ α β ∈ { }{ } , 

 
1 , , 1( (0 )) | , , , , (0 ) (0 )

mh S m S SU V I m Vβ β λΩ = β β ∈ ∈ ∈ Ω  { }  

 ( , ( ), ) | ( ) ( ), \ 0 , ,SV s V s s s S Iλα β ∈ Ω ∈ α β ∈ { }{ } , 

 1

1

, ,
1 1, , ( (0 )) | , , , , , , , , (0 )n

mi S n m SU V I n m Vα α
λβ βΩ = α α β β ∈ ∈ ∈

  {   

 (0 ) ( , ( ), ) | ( ) ( ), \ 0 , ,S SV s V s s s S Iλ∈ Ω α β ∈ Ω ∈ α β ∈ { }} { } . 

Obviously, the conditions (BP1)–(BP3) [4] hold for the families vΩ , hΩ  

and iΩ , and hence vΩ , hΩ  and iΩ  are the bases of topologies ( )v S , ( )h S  

and ( )i S  on the semigroup ( )0B Sλ , respectively. 

Definition 4. Let S  be a topological semigroup with zero 0 . Then S  is 
called a left [right] 0 -bounded semigroup if for any open neighborhood (0)U  
of zero there exists an open neighborhood  (0)V  such that (0) (0)V S U⋅ ⊆  
[ (0) (0)S V U⋅ ⊆ ]. A left and right 0 -bounded topological semigroup is called 
0 -bounded. 

Theorem 7. Every compact topological semigroup with zero is 0 -bounded. 

P r o o f. Let S  be a compact topological semigroup with zero 0  and 
(0)U  be an open neighborhood of 0 . Since the multiplication in S  is continu-

ous, for any s S∈  there exist open neighborhoods ( )V s  and (0)sV  of s  and 

0 , respectively, such that ( ) (0) (0)sV s V U⊆  and (0) ( ) (0)sV V s U⊆ . The com-

pactness of S  implies that the open cover ( ) |V s s Sγ = ∈{ }  contains a finite 

subcover 0 ( ) | , 1, ,j jV s s S j kγ = ∈ = { } . Put 
1

(0) (0)
j

k

s
j

V V
=

=  . Therefore, we 

get 

1 1(0) ( ( ) ( )) (0) ( ) (0) ( ) (0) (0)k kSV V s V s V V s V V s V U= ⊆ ⊆   

and 

1 1(0) (0)( ( ) ( )) (0) ( ) (0) ( ) (0)k kV S V V s V s V V s V V s U= ⊆ ⊆  . ◊ 

Proposition 6. Let λ ≥ ω  and ( , )S τ  be a topological semigroup with zero. 

Then the semigroup ( , )S   is left [right] 0-bounded if and only if 0( ( ), ( ))vB S Sλ   

[ 0( ( ), ( ))hB S Sλ  ] is a topological semigroup. 

P r o o f. ( ⇒ ) We consider only the case 0( ( ), ( ))vB S Sλ  . The proof of the 

statement for the semigroup 0( ( ), ( ))hB S Sλ   is similar. 
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It is sufficient to consider the following cases. 
1°. Let 0ab c= ≠  in S  and ( ) ( ) ( )U a U b U c⊆ . If β ≠ γ , then 

 1 , ,( , ( ), )( , ( ), ) 0 ( (0))nU a U b U Uα αα β γ δ = ⊆ { }  

for any 1, , n Iλα α ∈  and any open neighborhood (0)U  of the zero 0 , and 

( , ( ), )( , ( ), ) ( , ( ), )U a U b U cα β β δ ⊆ α δ . 

2°. Let 0ab =  in S  and ( ) ( ) (0)U a U b U⊆ . If β ≠ γ , then 

 1 , ,( , ( ), )( , ( ), ) 0 ( (0))nU a U b U Uα αα β γ δ = ⊆ { }  
and 

1 , ,( , ( ), )( , ( ), ) ( (0))nU a U b U Uα αα β β δ ⊆    

for any 1, , n Iλα α ∈  and any open neighborhood (0)U  of the zero 0 . 

3°. If (0)V  and (0)U  are open neighborhoods of zero in S  such that 

(0) (0)V S U⊆ , then 1 1 1, , , , , ,( (0)) ( (0)) ( (0))n n nU V U V U Uα α α α α α⊆   . 

4°. If ( )V a , (0)V  and (0)U  are open neighborhoods of a  and zero in S  
such that ( ) (0) (0)V a V U⊆  and (0) ( ) (0)V V a U⊆ , then  

1 1, , , , ,( , ( ), ) ( (0)) ( (0))n nV a U V U Uα α β α αα β ⊆   
and  

1 1, , , ,( (0))( , ( ), ) ( (0))n nU V V a U Uα α α αα β ⊆  . 

( ⇐ ) Suppose the contrary, i. e. that 0( ( ), ( ))vB S Sλ   is a topological semi-

group and ( , )S   is a non-left 0 -bounded topological semigroup. Then there 

exists an open neighborhood (0)U  of zero in ( , )S   such that (0) (0)V S U  for 

any open neighborhood (0)V  of the zero 0  in ( , )S  . Therefore for every open 

neighborhood (0)W  of zero in ( , )S   and any 1 1, , , , ,m k Iλα α β β ∈  , ,m k∈ , 

the following condition holds 1 1 1, , , , , ,( (0)) ( (0)) ( (0))k k mU W U W U Uβ β β β α α   , 

which contradicts the assumption that 0( ( ), ( ))vB S Sλ   is a topological semi-

group. ◊ 
Proposition 7. Let λ ≥ ω  and let ( , )S   be a topological (inverse) semi-

group with zero. Then 0( ( ), ( ))iB S Sλ   is a topological (inverse) semigroup. 

The  p r o o f  of Proposition 7 is similar to the one of Proposition 6. 
Proposition 2 [7] implies the following 

Lemma 3. Let λ ≥ ω , 0 ( )B Sλ  and T  be topological semigroups and 
0: ( )h B S Tλ →  be a continuous homomorphism such that 0( ( ))h B Sλ  is a dense 

subset in T . Then 0 (0)T h=  is the zero of the semigroup T . 

Theorem 8. Let λ ≥ ω  and ( , )S   be an absolutely H -closed topological 

(inverse) monoid with zero. Then 0( ( ), ( ))iB S Sλ   is an absolutely H -closed topo-

logical (inverse) semigroup. 

P r o o f. Suppose the contrary, i.e. that 0( ( ), ( ))iB S Sλ   is not an absolute-

ly H -closed topological semigroup. Then there exists a continuous homomor-

phism 0: ( )h B S Tλ →  from 0 ( )B Sλ  into a topological semigroup T  such that 
0( ( ))h B Sλ  is not a closed subset in T . Without loss of generality we can sup-

pose that the set 0( ( ))h B Sλ  is dense in T  and 0( ( ))h B S Tλ ≠ . Then there exists 

0 0( ( )) \ ( ( ))x h B S h B S Tλ λ∈ ⊆ . By Lemma 3, (0) 0Th =  and hence 0Tx ⋅ =  
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0 0T Tx= ⋅ = . Since T  is a topological semigroup, for any open neighborhood 

(0 )TW  of 0T  in T  there exist open neighborhoods (0 )TV  and (0 )TU  of 0T  in 

T  and an open neighborhood ( )V x  of x  in T  such that (0 ) ( )TV V x = ∅ , 

(0 ) ( )TU V x = ∅ , (0 ) (0 )T TV W⊆ , (0 ) (0 )T TU W⊆ , (0 ) ( ) (0 )T TV V x U⋅ ⊆ , and 

( ) (0 ) (0 )T TV x V U⋅ ⊆ . 

Since 10 ( (0 ))Th U−∈  and 1( (0 ))Th U−  is an open subset in 0( ( ), ( ))iB S Sλ  , 

there exist 1 1, , , , ,n m Iλα α β β ∈   such that 1

1

, , 1
, , ( (0 )) ( (0 ))n

m S SU V h Uα α −
β β ⊆
 . 

By Lemma 1 the sets ( )h Sαβ  and ( )h Sγδ  are homeomorphic in T , and 

hence are closed subsets of T  for all , , , Iλα β γ δ ∈ . Therefore at least one of 

the following conditions holds: 

(i) for some 0 1,2, ,i n∈ { } , the set 
0 0

1 1( ( )) ( , , ) |i iB h V x s s S−= α γ ∈ { , 

Iλγ ∈ }  intersects infinitely many subsets Sαβ ; 

(ii) for some 0 1,2, ,j m∈ { } , the set 0
0

1 1( ( )) ( , , ) |j
jB h V x s s S−= γ α ∈ { , 

Iλγ ∈ }  intersects infinitely many subsets Sαβ . 

Indeed, suppose that for any 
0i

Iλα ∈  the set 
0i

B  intersects finitely many 

subsets Sαβ , i. e. 
i i

S Sαβ α β ≠ ∅  only for 1,2, ,i n=  . By Lemma 1 the set 

( )
i i

h Sα β  is closed in T  and hence 
1 1

( ) ( )
n n

h S h Sα β α β  is a closed subset of 

T . Therefore x  is not a limit point of the set 0( ( ))h B Sλ  in the topological 

space T . This contradicts the choice of α . Therefore the set 
0i

B  intersects in-

finitely many subsets Sαβ  for some 0 1,2, ,i n∈ { } . 

Taking 0i  as in (i), we define 

0
|i IλΓ = γ ∈{  there exists s S∈  such that 

0

1( , , ) ( ( ))i s h V x−α γ ∈ } . 

For any element 1

1

, ,
, , ( (0 ))k

k SU Vδ δ
δ δ

  of the base of the topology ( )i S  at ze-

ro, where 1, , k Iλδ δ ∈  and 1

1

, , 1
, , ( (0 )) ( ( ))k

k SU V h V xδ δ −
δ δ ⊆
  we have that the set 

1

0 1

, ,
, ,( , , ) | , ( (0 ))k

ki Ss s S U Vδ δ
δ δγ γ γ ∈ Γ ∈ 
{ }  contains infinitely many subsets Sαα  

and hence the set 
0i

Γ  is infinite. Since 
0

( , , ) ( , , ) ( , , )i s s sα γ ⋅ γ γ ≠ α β , for α ∉  

1, , n∉ α α{ } , 1, , mβ ∉ β β{ }  and 0 1,2, ,i n∈ { }  we have 

 1 1

0 1 1

, , , ,
, , , ,( (0 )) ( (0 ))k n

k mi S SB U V U Vδ δ α α
δ δ β β⋅  
  , 

which contradicts the inclusion ( ) (0 ) (0 )T TV x V U⋅ ⊆ . 

Let 0 1,2, ,j m∈ { }  be such that the set 0
0

1( ( )) ( , , ) |j
jB h V x s s−= γ α ∈ {  

1,S Iλ∈ γ ∈ }  intersects infinitely many subsets Sαβ . We define 

0 |j IλΓ = γ ∈{  there exists s S∈  such that 
0

1( , , ) ( ( ))js h V x−γ α ∈ } . 

For any element 1

1

, ,
, , ( (0 ))k

k SU Vδ δ
δ δ

  of the base of the topology ( )i S  at 

zero, where 1, , k Iλδ δ ∈  and 1

1

, , 1
, , ( (0 )) ( ( ))k

k SU V h V xδ δ −
δ δ ⊆
  we have that the 

set 10

1

, ,
, ,( , , ) | , ( (0 ))k

k

j
Ss s S U Vδ δ

δ δγ γ γ ∈ Γ ∈ 
{ }  contains infinitely many subsets 
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Sαα  and hence the set 0jΓ  is infinite. Since 
0

( , , ) ( , , ) ( , , )js s sγ γ ⋅ γ α ≠ β α  for 

1, , nα ∉ α α{ } , 1, , mβ ∉ β β{ }  and 0 1,2, ,j m∈ { }  we have 

 1 10

1 1

, , , ,
, , , ,( (0 )) ( (0 ))k n

k m

j
S SU V B U Vδ δ α α

δ δ β β⋅ 
  , 

which contradicts the inclusion (0 ) ( ) (0 )T TV V x U⋅ ⊆ . 

Therefore, the contradictions derived show that 0( ( ), ( ))iB S Sλ   is an abso-

lutely H -closed topological (inverse) semigroup. ◊ 
Theorem 8 implies 
Corollary 3. Let λ ≥ ω  and let ( , )S   be a compact topological (inverse) 

monoid with zero. Then 0( ( ), ( ))iB S Sλ   is an absolutely H -closed topological 

(inverse) semigroup. 
The proof of next Theorem is similar that of Theorem 8. 
Theorem 9. Let λ ≥ ω  and let ( , )S   be a left [right] 0 -bounded absolutely 

H -closed topological monoid with zero. Then 0( ( ), ( ))hB S Sλ   [ 0( ( ), ( ))vB S Sλ  ] is 

an absolutely H -closed topological semigroup. 
Theorem 9 implies 
Corollary 4. Let λ ≥ ω  and let ( , )S   be a compact topological (inverse) 

monoid with zero. Then 0( ( ), ( ))hB S Sλ   and 0( ( ), ( ))vB S Sλ   are absolutely H -

closed topological semigroups. 
If in the proof of Theorem 8 we suppose that the homomorphism 
0: ( )h B S Tλ →  is an embedding, then we get Theorem 10, and similarly Theo-

rem 11. 
Theorem 10. Let λ ≥ ω  and let ( , )S   be a H -closed topological (inverse) 

monoid with zero. Then 0( ( ), ( ))iB S Sλ   is a H -closed topological (inverse) semi-

group. 
Theorem 11. Let λ ≥ ω  and let ( , )S   be a left [right] 0 -bounded H -

closed topological monoid with zero. Then 0( ( ), ( ))hB S Sλ   [ 0( ( ), ( ))vB S Sλ  ] is a 

H -closed topological semigroup. 
A. D. Wallace in [14] proved that if S  is a compact topological semigroup 

and ρ  is a closed congruence on S , then /S ρ  is a compact topological semi-

group. As a consequence of this result we have that if I  is a closed ideal of a 
compact topological semigroup S , then /S I  is a compact topological semi-
group. J. D. Lawson and B. L. Madison in [10] generalized this Wallace’s result 
and showed that if S  is a locally compact σ -compact topological semigroup 
and ρ  is a closed congruence on S , then /S ρ  is a topological semigroup. As 
an immediate corollary of the Lawson – Madison Theorem, we have a topolo-
gical version of the Rees quotient semigroup: if S  is a locally compact σ -
compact topological semigroup and I  is a closed ideal of S , then /S I  is a 
topological semigroup. 

The next theorem is a generalization of the Wallace Theorem on the Rees 
quotient semigroup. 

Theorem 12. Let S  be a topological semigroup and I  be a compact ideal 
in S . Then /S I  is a topological semigroup. 

P r o o f. Let : /S S Iπ →  be a natural homomorphism. By Proposition 
2.1 [10] it is sufficient to prove that the map : / /S S S I S Iπ × π × → ×  is 
quotient. We shall show that the map : /S S Iπ →  is perfect. Since for any 

/a S I∈  the set 1( )a−π   is compact in S , it is sufficient to prove that π  is a 
closed map. Let A  be a closed subset in S . We remark that the restriction 
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\| : \ ( / ) \ ( )S I S I S I Iπ → π  of the map π  is a homeomorphism. Hence, if 

A I = ∅  then ( )Aπ  is a closed subset of /S I . Suppose that A I ≠ ∅  and 

( )Aπ  is not a closed subset in /S I . Since the map π  is quotient, 1( ( ))A−π π  is 

a nonclosed subset of S . But the set 1( ( ))A−π π  is closed in S  as a union of 
the closed subset A  and the compactum I , a contradiction. The obtained con-
tradiction implies that π  is a closed map. Then by Theorem 3.7.7 [4] the map 

: / /S S S I S Iπ × π × → ×  is perfect and hence by Corollary 2.4.8 [4] is quo-
tient. Therefore /S I  is a topological semigroup. ◊ 

In [9] O. Hryniv constructed an example of a locally compact metrizable 
topological semigroup S  with a closed ideal I  such that /S I  is not a topo-
logical semigroup. In our paper we construct an example of an absolutely H -
closed countable metrizable topological semigroup S  with an absolutely H -
closed ideal I  such that /S I  is not a topological semigroup. 

Example 1 [6]. Let   be the set of positive integers. Let nx{ }  be an in-

creasing sequence in  . Put 10 |n n∗ = ∈{ } { }  . We define the semilattice 

operation on ∗  as follows: min ,ab a b= { } , for ,a b ∗∈  . Obviously, 0  is the 

zero of ∗ . We put 1(0) 0 | ,n kxU k n n= ≥ ∈{ } { }  . A topology   on ∗  is 

defined as follows: 

a) all nonzero elements of ∗  are isolated points in ∗ ; 

b) (0) (0) |nU n= ∈{ }  is the base of the topology   at the point 0 ∗∈  . 

It is easy to see that ( , )∗   is a countable linearly ordered σ -compact 
locally compact metrizable topological semilattice and if 1 1k kx x+ > +  for any 

k ∈   then ( , )∗   is a non-compact semilattice. > 

By Proposition 1 [6] ( , )∗   is an H -closed topological semilattice and 

hence by Theorem 1 [6] the semilattice ( , )∗   is an absolutely H -closed. 

Let ∗∉ 0 . We extend the semilattice operation from ∗  to 
∗ ∗=   0  

as follows: x x= = =0 0 00 0 . We define the topological space 
∗  to be a topo-

logical sum of the space ( , )∗   and the single space 0 . 

Proposition 8. 
∗  is an absolutely H -closed metrizable topological semi-

lattice. 

Theorem 13. Let λ = ω . Then  0( ( ), ( ))hB
∗ ∗

λ    and  0( ( ), ( ))vB
∗ ∗

λ    are 
metrizable topological semigroups. 

P r o o f. We consider only the case  0( ( ), ( ))hB
∗ ∗

λ   . In the case 

 0( ( ), ( ))vB
∗ ∗

λ    the proof is similar. 

Obviously, the topological semilattice 
∗  is a zero-dimensional topological 

space, i. e. there exists a base of 
∗  which consists from clopen subsets. Hence 

by the definition of the topology ( )h

∗
   every non-zero element of the topo-

logical semigroup  0( ( ), ( ))hB
∗ ∗

λ    has a base which contains clopen subsets. 

Since 0  is an isolated point in 
∗ , every element 

1 , , ( )
m

Uβ β 0  of the base hΩ  

of the topology ( )h

∗
   has an open complement in 0 ( )B

∗
λ   and hence 
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1 , , ( )
m

Uβ β 0  is a closed subset of  0( ( ), ( ))hB
∗ ∗

λ   . Therefore the topological 

space  0( ( ), ( ))hB
∗ ∗

λ    is 0-dimensional and hence is regular. Since λ = ω , the 

definition of the base hΩ  implies that  0( ( ), ( ))hB
∗ ∗

λ    is a second countable 

space, and hence by Theorem 4.2.9 [4] the topological space  0( ( ), ( ))hB
∗ ∗

λ    is 

metrizable. ◊ 

The set  ( ) 0 ( , , ) | , , I
∗ ∗

λ= α β ∈ α β ∈{ } { }  0 0  is an ideal of 0 ( )B
∗

λ  . By 

Theorem 6 [8] the semigroup ( )
∗  with the induced topology h  from 

 0( ( ), ( ))hB
∗ ∗

λ    is an absolutely H -closed topological semigroup and hence is 

a closed ideal of  0( ( ), ( ))hB
∗ ∗

λ   . Similarly we get that ( )
∗  with the in-

duced topology v  from  0( ( ), ( ))vB
∗ ∗

λ    is an absolutely H -closed topological 

semigroup and hence is a closed ideal of  0( ( ), ( ))vB
∗ ∗

λ   . 

Obviously, the Rees quotient semigroup  0 ( ) / ( )B
∗ ∗

λ    is algebraically 

isomorphic to the semigroup 0 ( )B ∗
λ  . 

Lemma 4. The topological semilattice ( , )∗   is 0 -bounded if and only if 
it is compact. 

P r o o f. ( ⇒ ) Suppose there exists an increasing sequence nx{ }  in   

such that ( , )∗   is a 0 -bounded non-compact topological semilattice. Then 
there exists 0k ∈   such that 1 1k kx x+ > +  for all 0k k> , k ∈  . Then 

(0) (0) (0)i i jU U U∗ ∗=    for any ,i j ∈  , a contradiction. The obtained con-

tradiction implies the implication. 
The implication ( ⇐ ) follows from Theorem 7. ◊ 
Lemma 4 implies 
Theorem 14. Let λ ≥ ω  and nx{ }  be an increasing sequence in   such 

that 1 1k kx x+ > +  for any k ∈   and define the topological semigroup ( , )∗   

as above. Then the semigroup operations in 0( ( ), ( ))hB ∗ ∗
λ    and 

0( ( ), ( ))vB ∗ ∗
λ    are discontinuous. 

Theorem 15. Let λ ≥ ω  and nx{ }  be an increasing sequence in   such 

that 1 1k kx x+ > +  for any k ∈   and define the topological semigroup ( , )∗   

as above. Then the topological Rees quotient semigroups   0( ( ), ( ))/ ( )hB
∗ ∗ ∗

λ     

and   0( ( ), ( )) / ( )vB
∗ ∗ ∗

λ     are not topological semigroups. 

P r o o f. We consider only the case   0( ( ), ( ))/ ( )hB
∗ ∗ ∗

λ    . The proof 

of the statement for the semigroup   0( ( ), ( )) / ( )vB
∗ ∗ ∗

λ     is similar. 
At first we determine a base of the topology of the quotient space 

  0( ( ), ( ))/ ( )hB
∗ ∗ ∗

λ    . Since for any n ∈   the point 1
n  is isolated in the 

topological space ( , )∗ τ , Proposition 2.4.3 [4] implies that any non-zero ele-

ment of the semigroup   0( ( ), ( ))/ ( )hB
∗ ∗ ∗

λ     is isolated. 
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By ,Iλ
Φ   we denote the set of maps from Iλ  into the set of positive inte-

gers  . Let n ∈   and let (0)nU  be the set defined in Example 1. We define 

\ (0)n nM U=    for any n ∈  . For all 1 ,, , k Iλ
ϕ ϕ ∈ Φ   and all 1, , k Iλα α ∈ , 

k ∈   we put 1

1

, , 0
( ), ,

1
( ) \ ( , , )k

ik

k

i
i I

M B M
λ

∗α α
λ ϕ γϕ ϕ

= γ∈

 = γ α 
 


   . Proposition 2.4.3 [4] 

implies that the family  1

1

, ,
1 1 ,, ,(0) | , , , , ,k

k k k IM I
λ

α α
λϕ ϕ= α α ∈ ϕ ϕ ∈ Φ

  {  , 

k ∈ }  is a base at zero of the topology of the space   0( ( ), ( ))/ ( )hB
∗ ∗ ∗

λ    . 

Since the topological semigroup ( , )∗   is not compact, there exists 0n ∈ 

∈   such that 
0

(0) (0) (0)k k nU U U∗ ∗=    for all k ∈  . We consider 0ψ ∈  

,Iλ
∈ Φ   such that 0 0( ) nψ γ =  for all Iλγ ∈  and fix 0 Iλα ∈ . Obviously, 0

0
Mα

ψ ∈  

(0)∈  . We remark that ( ) ( )( , , )( , (0) \ 0 , ) ( , ( (0) \ 0 ), )U Uϕ βϕ βγ β β α = γ α{ } { }    

0
( , (0), )nUγ α  for all , , Iλα β γ ∈  and all ,Iλ

ϕ ∈ Φ  . Therefore, for every 

1, , j Iλα α ∈  and every 1 ,, , j Iλ
ϕ ϕ ∈ Φ  , where j ∈  , we have 

1 1 0

1 1 0

, , , ,

, , , ,
j j

j j
M M M

α α α α α
ϕ ϕ ϕ ϕ ψ

 
   , and hence the semigroup operation in the semigroup 

  0( ( ), ( ))/ ( )hB
∗ ∗ ∗

λ     is discontinuous at zero. ◊ 
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ПРО λ0 -РОЗШИРЕННЯ БРАНДТА НАПІВГРУП З НУЛЕМ 
 
Ââîäèòüñÿ 0λ -ðîçøèðåííÿ Áðàíäòà 0 ( )B Sλ  íàï³âãðóïè S  ç íóëåì ³ âñòàíîâëåíî 

äåÿê³ àëãåáðà¿÷í³ âëàñòèâîñò³ íàï³âãðóïè S , ÿê³ çáåð³ãàþòüñÿ íàï³âãðóïîþ 0 ( )B Sλ . 

Òàêîæ ââåäåíî òîïîëîã³÷íå 0λ - ðîçøèðåííÿ Áðàíäòà òîïîëîã³÷íî¿ íàï³âãðóïè S  ç 
íóëåì ³ âñòàíîâëåíî éîãî òîïîëîã³÷í³ âëàñòèâîñò³ â çàëåæíîñò³ â³ä òîïîëîã³÷íî¿ 

íàï³âãðóïè S . Çîêðåìà, äîâåäåíî, ùî òîïîëîã³÷íå 0λ -ðîçøèðåííÿ Áðàíäòà (àáñî-
ëþòíî) H -çàìêíåíî¿ òîïîëîã³÷íî¿ ³íâåðñíî¿ íàï³âãðóïè S  º (àáñîëþòíî) H -çà-
ìêíåíîþ íàï³âãðóïîþ ó êëàñ³ òîïîëîã³÷íèõ ³íâåðñíèõ íàï³âãðóï. Ïîáóäîâàíî òîïî-

ëîã³¿ íà íàï³âãðóï³ 0 ( )B Sλ , ÿê³ çáåð³ãàþòü àáñîëþòíó H -çàìêíåí³ñòü ³ H -çàìêíå-

í³ñòü. Çà äîïîìîãîþ òîïîëîã³÷íîãî 0λ -ðîçøèðåííÿ Áðàíäòà ïîáóäîâàíî ïðèêëàä 
àáñîëþòíî H -çàìêíåíî¿ ìåòðèçîâíî¿ ³íâåðñíî¿ òîïîëîã³÷íî¿ íàï³âãðóïè S  ç àáñî-
ëþòíî H -çàìêíåíèì ³äåàëîì I  òàêî¿, ùî ôàêòîð-íàï³âãðóïà Ð³ñà /S I  íå º òî-
ïîëîã³÷íîþ íàï³âãðóïîþ. 
 

О λ0 -РАСШИРЕНИЯХ БРАНДТА ПОЛУГРУПП С НУЛЁМ 
 

Ââîäèòñÿ 0λ -ðàñøèðåíèå Áðàíäòà 0 ( )B Sλ  ïîëóãðóïïû S  ñ íóë¸ì è óñòàíîâëåíû 

íåêîòîðûå àëãåáðàè÷åñêèå ñâîéñòâà ïîëóãðóïïû S , êîòîðûå ñîõðàíÿþòñÿ ïîëó-

ãðóïïîé 0 ( )B Sλ . Òàêæå ââåäåíî òîïîëîãè÷åñêîå 0λ -ðàñøèðåíèå Áðàíäòà òîïîëî-

ãè÷åñêîé ïîëóãðóïïû S  ñ íóë¸ì è óñòàíîâëåíî åãî òîïîëîãè÷åñêèå ñâîéñòâà â çà-
âèñèìîñòè îò òîïîëîãè÷åñêîé ïîëóãðóïïû S . Â ÷àñòíîñòè, äîêàçàíî, ÷òî òîïî-

ëîãè÷åñêîå 0λ -ðàñøèðåíèå Áðàíäòà (àáñîëþòíî) H -çàìêíóòîé òîïîëîãè÷åñêîé 
èíâåðñíîé ïîëóãðóïïû S  åñòü (àáñîëþòíî) H -çàìêíóòàÿ ïîëóãðóïïà â êëàññå 

òîïîëîãè÷åñêèõ èíâåðñíûõ ïîëóãðóïï. Ïîñòðîåíî òîïîëîãèè íà 0 ( )B Sλ , êîòîðûå 

ñîõðàíÿþò àáñîëþòíóþ H -çàìêíóòîñòü è H - çàìêíóòîñòü. Ñ ïîìîùüþ êîí-

ñòðóêöèè òîïîëîãè÷åñêîãî 0λ -ðàñøèðåíèÿ Áðàíäòà ïîñòðîåí ïðèìåð àáñîëþòíî 
H -çàìêíóòîé ìåòðèçóåìîé èíâåðñíîé òîïîëîãè÷åñêîé ïîëóãðóïïû S  ñ àáñîëþò-
íî H -çàìêíóòûì èäåàëîì I  òàêîé, ÷òî ôàêòîð-ïîëóãðóïïà Ðèññà /S I  íå ÿâ-
ëÿåòñÿ òîïîëîãè÷åñêîé ïîëóãðóïïîé. 
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