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MULTIPOINT FORMULA BASED ON ASSOCIATED CONTINUED FRACTION

The m -point formula for a function approximation has been constructed by using
a function expansion into an associated continued function of special type at m,
m > 2, points and properties of functions being the unit factorization. The pro-
perties of a such associated continued fraction have been also investigated.

1. Preliminary investigation. It is known that generalizations of the clas-
sic Taylor formula have some advantages in comparison with the Taylor for-
mula. O. M. Lytvyn and V. L. Rvachov [3] proposed to construct an approxi-
mate Taylor-like polynom, using the Taylor expansion at several points and
connected them with special real functions being the unit factorization, i.e.
the polynom of the form

T(x) = Zh (x )Z

where x eR, x, €[a,b]cR and functions h,(x) e C* are non-negative,

df(xx ) ()

k
Z h, (x)=1, and applied it for approximate solving of boundary problems
m=1

for systems of differential equations. They also proposed several possibilities
for a choice of the functions h,(x). For instance, if in (1) k=2,

x, =a, x, =b it is convenient in practice to exploit functions h, (x) in the

form
0, x<x, ;, 2T,
x-x,
hm(x) = g}) (%_—17-7:711)7 xm71 <x < xm,
-
gp(xm":_xmj, x, Sx<x, .,
where
jtp(l t)P dt
2p +1
g, (x) = Z2 D0 , pmn.
(p!)

jt”(l —t)P dt
0

It was interesting to construct multipoint approximate formula, using rational
polynomials, in particular, the Thiele polynomial [4], closely connected with
the Taylor expansion. In [1] the formula like (1) was constructed

P,(x,x,,)
R(x) = 2, h, (@) =——"= (2)
z @, (x,x,,)’
P (x,x,) . . .
where ——— are the n-th approximants of the Thiele expansions at the
Qn(x7 xm)

points x,, respectively, and used for the function approximation.
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2. Investigation purpose. To construct the multipoint Thile formula the
corresponding continued fraction to the Taylor expansion was used [4] It is
naturally to continue previous investigations, using the different type of
continued fraction expansions. Since an associated continued fraction is one of
the important type of continued fractions we will consider the formula (2)
with the m-th approximants of the associated continued fractions of the
special type. It is known that a continued fraction of the form

1+ 2 3)
Ic2z2 ’
1+/4,z— 5
1+/4 Fey2
71y loz +
where k, #0, k, and ¢, n=12,..., are complex constants, z € C, is called

an associated continued fraction and it was also shown that the even part of a
regular C-fraction is an associated continued fraction [4, 5]. We will consider
a continued fraction of the following form:

(2—20)2

: (4)

o0
0, +0,(z-2,)+
0 1 0
sl Oge + (2= 2) 09y
where w,;, #0, oy, 0y.,;, kK=0,1,..., are complex constants, obtained from

the interpolating problem [2] in the one-dimensional case, investigate its
properties and apply it for the construction of the multipoint formula.

3. Main results. At first we show that the fraction (4) is the associated
continued fraction with the order of correspondence of its n -th approximant
P (2)
Q,(2)
the continued fraction (3) is equal to 2n +1 [5]).

By equivalent transformations the continued fraction (4) can be reduced
to the following form:

equals 2n + 2 (the order of correspondence of the n -th approximant of

1

O © W 0}
oy |1+ —L(z-2,) + ) 222
@ k=1 Do 41
= 1+(2—20)70)

(z—z0)2

and using the difference equations [(2.1.6), [5]], we have that the mn-th
numerator P, (z) and denominator @,(z) of (4) are polynomials in z -z, of

the form
P (2) =)+, (z=20) +a,,(2—2¢)* +... 40, ., (2—2)""",
Q,(2)=1+b, (z—2))+b,,(z—2() +...+ b, ,(z—2()",
where n =0,1,2,...; a; ;s 1<i1<n;1<j5<n+1, bi’j, 1<, j<n, depend on
o : P,(2) .
Oy 0<14,j<2n+1. Thus the n-th approximant f (z)= 0 ) is holomor-
n
phic at the z = z; and its Taylor series at z = z
Pn(z) n 2
Qn(z):co+c§")(z—zo)+cé N2z +..., cp =,

has a positive radius of convergence.
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Theorem 1. 1°. A continued fraction (4) corresponds to a uniquely deter-
mined formal power series

f(2) =cy +c(z—2) +cy(z—2))" +....

6)

P (z
The order of correspondence of the m-th approximant "((Z)) is 2n+2 and
n

P
hence the Taylor series at z = z; of Q"—((ZZ)) has the form
n

P, (2) =cy+e(z—2))+cy(z—2)) +... +
(Qn(z) 0 1 0 2 0 e

2n+1 2n+2
+-C2n+1(z _'ZO) " +-C§ZLQ(Z _-ZO) mE 4

2°. If two continued fractions of the same form (4) correspond to the same
formal power series (b), then their corresponding coefficients coincide.

P r oo f. By using the determinant formula (2.1.9) from [5] we obtain
Pou() PB,(2) 1 (-1)"(z - 2)""* _
Q.2 @, Q2,2 1

H D2 Doy,
k=1

2n+2
(2- %) (n+1) _ (n) a3
n+1 4_(c2n+3 _'C2n+3)(z _'Zo) +...
H Wgpe 9 Doy
k=1

- -"

and hence the first part of the theorem follows from Theorem 5.1 [5]. The
second part of the theorem is proved by induction on n. ¢

Theorem 2. For a given formal power series (5) there exists an unique
associated continued fraction of the form

k _ 2
¢ Tz —2)+ = Z;)c)(z z)" ’ ©
_ 2\ T <~
1+4,(z—2) —

1+4,(z~z)

where k, #0, k, = M,

5 n=12..,
¢n
cy €y C,n
00 = 0, = 1, 0. = C3 C4 .. Cpiy ’ m=23..,
Cn1 C2n172
and £, =cy, £, =X—"—M, n=12...,
@n ¢n+1
Ca Cs Cm-1 Cm+1
X =0, Ay =C35 A = ¢ G o Cm m+2 | m =3,4,...,
Cm  Cm+1 Com-3 Com-1

if o, #0, n=1,2,....
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The proof of this theorem is similar to the proof of the theorem 7.14
[5] and therefore is omitted. ¢

Remark 1. One can note that putting in (4)

o - ko . Ky, © _ Cop kol o Koy o
4n ko, ... ky, n-1 kiky.. .ky, |,
© _ kokey .. ks, © _ o kekes kg, )
4n-2 kiky.. . ky, |’ dn+l k.ky ... ko,
where n =1,2,..., k;, =1, after elementary transformations, the fraction (6) is

obtained.

Let us assume that a function f(z) given in the bounded domain G,
G < C, expands into the associated continued fraction (4) at the point z = z,
z, € G and find the remainder term of the function approximation by the
n-th approximant of the continued fraction (4).

Theorem 3. Let a function f(z) given in the bounded domain G c C,
being 2n +2 continuously differentiable on G, be approximated by the conti-

P
nued fraction (4). Then the remainder term R,  ,(f,z) = f(z)—Q"—((ZZ)) at any
n
point z € G, different from zeros of Q,(2), can be represented in the following
form:
(z - 20)27”2 q2n+2

Ry, .0(f,2) =

Cn+2)1Q (z) 222 [f2)Q,()]..c, €€G, 2 €G. (1

Proof We expand the function y(z) = f(2)@,(z) — P,(z), equals zero at

z = z,, into the Taylor series at z = z;:

T d y(z) (2 7)"
y(z)= ) o o

k=0

+ Ry, ,9(2),

where R, ,,(z) is the remainder term of the Taylor formula. Taking into

account the fraction (4) is the associated fraction for the Taylor series, we
have at once

dr Pn(Z)}
—| f(2) - =0 at z =2z, =0,1,....2n+1,
qaP |:f( ) Q,(2) 0 p
P
and thus j—p[w(z)] =0 at z=2;,, p=0,1,...,2n +1. Using the Rolle theorem
z
for the real function o(t), 0 <t <1,
o(t) =
2041 gy (2, + (2 =2 )t) (-2, )"
(- 3 SV — ) (1=t = Ry ()1 - 1),
k=0 dz :
we obtain ¢'(8) =0, 0 <0 < 1. It means that
oIn+2 (Z _ ZO)ZTL+2
Ry, .0(2) = W\V(Zo +(2 - 2,)0) “Entol

2n+2 2n+2
dn n

Ww(zo +(z-2,)0) = %[]‘(20 +(2-2,)0)Q, (2, + (2 - 2,)0)],
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where 0 < 0 <1, taking into account the degree of P, (z), and R,,  ,(f,2)=
_ Ryn.9(2)
Q,(2)

In the next results we will consider the continued fraction (4) with real
coefficients and use it for the approximation of a real function.

. From this, the statement of the theorem follows. ¢

Theorem 4. Let f(x) given on [0,1] be expanded into the continued frac-
tion (4) at the point x = x,, x, € (0,1), and all partial denominators of (4) are
positive and satisfy the following conditions

Oy, + (2 = 2y)Og,; = 1+ (x — )7, k=1,2,.... (8)
Then the continued fraction (4) converges uniformly on [0,1] and for all
x €(0,1)
Mn (x _ xo )2n+2

R < ’
| Rypia(f, ) | 2n+2)(1+ (x - xy)*)"

9)

where
2n+2

_ d
M, = max| -~ [ f(@)Q,(®)]:c | (10)

Proof Because of all partial numerators of (4) are positive and taking
into account the recurrence relations for @,(x), we have by induction,

Q,(x) 2 (1+(.x'—x0)2)” then using (7), we receive (9). The uniform conver-

gence of (4) follows immediately from the Worpitzky theorem [4, 5]. ¢

Remark 2. If in the theorem 4 we put | 0y, + 0y, (€ — ;)| 2 2+ (x — xy)*,

k=1,2,..., instead of (8) and will not demand positiveness of the partial deno-
minators, then the continued fraction (4) converges uniformly on [0,1] and for
all x € (0,1)

Mn (x _ xo )2n+2

R )| < ’
| Rypia(f,20) (2n+2)!2(1+(1'_x0)2)n

where M, is defined by (10).

Now we use the associated continued fraction (4) and its properties for
the function approximation by the formula looks like the formula (2). Let a

function f(x) given on [a,b] be a 2n +2 continuously differentiate function
at least on (a,b) and represented by the formula for all x € (a,b)

_ P(x,x) B, x;)
f() = hl(x){Qn(x,xl) (2, 2,) }+ h2(x){Qn(x,x2) 41, (@, 2,) } . (1)
P (x,x) P (x,x,)

where x,,x, € (a,b); are the n-th approximants of

and *—=
Q,(x,x)) Q,(x,x,)
the function expansions into the associated continued fraction (4) at the points
x =x; and x = x, respectively; 7, (x,x;) and r, (a,x,) are the corresponding
reminders, i.e.
P (x,x,) P, (x,x,)
T (x, ) = fx) - 5, T, (T, 2,) = fa) - 2

Q, (x,x;) @, (x,2,)
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Functions h;(x) € C*, i =1,2, are non-negative and can be used in the form

0, x<x,_ 4, TZ2x,,
B 3 x—-x,_ <<
i (x) = 9p m ) L] SX STy, (12)
X, -
Qp(x:l _xiJ, TS TE T
where
x
jtp(l—t)”dt
]
Qp(ac)I(szrzl)'0 , p>2n+2.
(ph

1
jt"(l —t)P dt
0

Taking into account (7), (10), for the reminder form of (11) 7, (a,x;,x,) =

= hy(x)r, (a, ;) + hy(x)1, (X, x,) We can write the inequality for all x € (a,b)

| 7, (x,2p,205) | <

M»,-L (J,‘ _ xl )2n+2 (x _ 96'2 )2n+2
@n+2) [hl(’” oz MG @y |
where x,,x, € (a,b), and

M, = max{ max |[f(x)Qn(x, xy)|Enr®)
€ e(a,b)

;c:él ’

£ye(a,b) z=ty

max |[f(x)Q, (x,x,)|*"? | } (13)

Theorem 5. Let the function f(x) given on [a,b], b—a =1, being 2n +2
continuously differentiable at least on (a,b), expands into the associated con-

tinued fraction (4) at the points x = x; and x = x,, x,,x, € (a,b).
Then,
(@)

the formula (11) is valid on (a,b);
(i7) 1if all partial denominators in the both terms of (11) are positive and

2
Do 2, +(.7c—.7cl)(x)2k+1’x1 21+ (x—-ay)",

2
Oale, +(x — .702)0)2}”1’3:2 21+ (x—x,)

’
where k=1,2,...,n, and Oy ., Oyeyzs Vg gy

Oges1,q, GT€ the coefficients
in the partial denominators of the expansions into (4) at x =x;, and x = x,
respectively, then for all x € (a,b)

ERCE R pp—
T (x,2,,%,)| < ,
nTR TR (o 4 2)1 Lt 2202

where M, is defined by (13), and L = min{(l +(x — xl)z), (14 (x- x,) )}

45



Proof For the sake of simplicity we put a =0, b=1 and using the
theorem 4 we receive that

Q,(x,x) > (1+(x—x))", Q,(x,2,) > (1 + (x —x,)*)".
Thus
M oIn+2 2n+2
|7 (2,0,1) | € ——2——| h(x)(x — 2" 2 + hy () (2 — ac,)™ 2 |
(2n + 2)!' L*

Having used properties of functions (12), as it was done in [3], we conclude
that

1

| hy(x)(x — x, P 4 hy (x)(x — a, )i | < 92n+2

and then

M
|7, (x,0,1)] < T
(2n + 2) L 22

Theorem 6. Let the function f(x) given on [a,b], b—a =1, being 2n +2
continuously differentiable at least on (a,b), expands into the associated con-
tinued fraction (4) at the points x = x; and x = x,, x;,o, € (a,b).

Then,

(7) the formula (11) is valid on (a,b);
(#7) if all partial denominators in the both terms of (11) satisfy the following
conditions

2
| Oz, + (x - .761)032]”17381 | 22+ (x—-x)°,

2
|w2k,x2 +(x - .762)0)2“17:lcz | > 24 (x—x,)°,

where k =1,2,...,n, then for all x € (a,b)
M

n

(2n + 2)1 L 227+3

| 7, (2, 2y, 205) | <

where M, is defined by (13) and L = min{(l +(x — xl)z), (1 +(x — x2)2)}.

Proof We can assume that all partial denominators are positive, if not
multiplying the numerator and denominator by (-1), we change the denomi-
nator sign. If all partial numerators are positive then using recurrent relations

for @ (x,x,), @, (x,x,) we obtain Q (x,x;)>(2+(x-2)*)", @, (x,x,)>

> (2+ (x - x,)*)" by induction. If some of partial numerators or all of them

are negative, then (4) will be transformed to the continued fraction with po-
sitive partial numerators, excluding, may be the first partial numerator as it
was done in Lemma 3.1 [4]. It is not difficult to show that in this case

Q,(x,x,) > 21+ (x-x)*)", @, (x,xy)=2(1+(x—x,)*)" and the result of the
theorem follows by analogy with the theorem 5. ¢

An m -point formula can be constructed by analogy with the two-point
formula. One denotes by x;, i =1,2,...,m, a sequence of values of x on the
interval (a,b), b—a =1, such that a<x, <x, <...<x, <b. The length of

b-a

the interval x; —x; ; is equal to . Let a function f(x) given on [a,b],
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b—a=1, be a 2n+2 continuously differentiable function at least on (a,b),
then an m -point formula, based on an associated continued fraction (4), is the
following formula for all x € (a,b):

(x,x;)
flx) = Zh( )[Q (iz)}Jrrmn(x,xl,xw...,xm),

P (x,x;)
Q, (x,x;)
n -th approximants of the function expansions into the associated continued
fraction (4) at points x, respectively,

where x,,x,,...,x,, €(a,b), h,(x) are defined by (12), are the

m

m P s i
T (B, 2], Ty, 2) = D Ry (2,2), 1y (@,2,) = f(2) —%.
i=1 n [ad)

Reminders 7,(x,x;) for this formula are investigated in similar way as for
the formula (11).

4. Conclusion. Proposed formulae give possibility to approximate func-
tions by rational polynomials. However, only the form of remainders of consi-
dered formulae have been proposed and it will be interesting to obtain the
error estimations for some class of functions and investigate the possibilities of
different continued fractions be applied to a such problem in future.
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BAFATOTOYKOBA ®OPMYIJIA, AKA BA3YETbCA
HA NMPUEOHAHOMY HEMNEPEPBHOMY APOBI

Hdas nabaudxcenns GyHryii oOHiel 3minHOL MOGYO08AHO M -MmouK08Yy Popmyay, 8 AKit
BUKOPUCTMAHO PO3BUHEHHA PYHKYIL Y NPuedHarull Henepepsrull Opid cneyianbHozo 6u-
a0y 6 m, m =2, moukax i eaacmusocmi PYHKYIU, AKL € PO3BUHEHHAM O0OUHUYI.
Jlocaidxceno maxode saacmugocmi maxozo 0poody.

MHOIroTO4YE4YHAA ®OPMYIA, OCHOBAHHAA
HA NMPUCOEOUHEHHOWU HENPEPbIBHOW OPOBU

HAas npubauscenus ynryuu oOHOU nepemeHHOU MOCMPOeHAa m -moueunHas dopmyaa,
UCNOABIYOWAS Pa3aodcenHue PYHKYUU 8 NPucoeduHeHHYyo Henpepuleryto O0podbL cne-
YuaavHozo euda 8 m, m = 2, moukax u ceoticmea PYHKYUU, ABAAOUUICS PA3LOHCE-
Huem eQunuysl. Vccaedyromes maxdce ceoticmsa maxoti 0poou.
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