О. Г. Сторож

ДИССИПАТИВНЫЕ ВОЗМУЩЕНИЯ С ИЗМЕНЕНИЕМ ОБЛАСТИ ОПРЕДЕЛЕНИЯ И J-НЕРАСТЯГИВАЮЩИЕ ОПЕРАТОРНЫЕ МАТРИЦЫ

Все гильбертовы пространства, рассматриваемые в этой статье, предполагаются комплексными, а действующие в них операторы — линейными. Символы D(T), R(T), Z(T) обозначают соответственно область определения, область значений и многообразие нулей оператора T. Под 1_X понимается тождественное преобразование множества X, а под $\mathcal{B}(X,Y)$, где X и Y — нормированные пространства, — множество линейных непрерывных операторов, таких, что D(T) = X, $R(T) \subset Y$; вместо $\mathcal{B}(X,X)$ пишем $\mathcal{B}(X)$.

Пусть L_0 — замкнутый плотно заданный симметрический оператор в гильбертовом пространстве H, имеющий равные (не обязательно конечные) дефектные числа; $(\mathcal{H}, \Gamma_1, \Gamma_2)$ — пространство граничных значений операто-

ра L_0 [4], $L=L_0^*$, Φ — компактный оператор из H в \mathcal{H} , причем \overline{R} (Φ) = \mathcal{H} , $A_{jk}\in\mathcal{B}$ (\mathcal{H}) (j,k=1,2) такие, что оператор

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \tag{1}$$

имеет обратный в $\mathcal{B}(\mathcal{H}\oplus\mathcal{H}),\ U_jy\stackrel{\text{def}}{=}A_{j1}\Gamma_1y+A_{j2}\Gamma_2y.$ Основным объектом нашего изучения является оператор S, определяемый посредством соотношений

$$D(S) = \{ y \in D(L) : U_1 y = \Phi y \},$$
 (2)

$$Sy = Ly + \Phi^*U_2y, \quad y \in D(S). \tag{3}$$

Кроме того, введем в рассмотрение вспомогательные операторы L_1 , L_2 и J, где L_j — сужение L на Z (U_j), j=1, 2, и для всяких h_1 , $h_2\in\mathcal{H}$ J (h_1 , h_2) = (i h_2 , —i h_1). Отметим, что S можно интерпретировать как возмущение оператора L_1 , изменяющее не только закон L его действия, но и оператор краевых условий U_1 . Операторы вида (2) — (3) рассмотрены в работе [7], где, в частности, доказано, что при сделанных предположениях S замкнут и плотно задан.

Нас интересуют условия, пои которых S максимально диссипативен. Известно [7], что в случае $\dim \mathcal{H} < \infty$ это имеет место тогда и только тогда, когда

$$AJA^* \leqslant J.$$
 (4)

В общем случае условие (4) оказывается необходимым, но, как показывают примеры, не достаточным для максимальной диссипативности оператора S. Справедлив следующий результат.

Теорема 1. Пусть выполняется условие (4). Следующие утверждения эквивалентны:

- а) S максимально диссипативен;
- б) L_1 максимально диссипативен;
- B) $R(A_{11}^* iA_{12}^*) = \mathcal{H};$
- r) $Z(A_{11} + iA_{12}) = \{0\};$
- д) $(A_{11} + iA_{12})^{-1} \in \mathcal{B}(\mathcal{H});$
- e) $A*JA \leq J$;
- ж) существуют гомеоморфизм $C_1\in\mathcal{B}\left(\mathcal{H}\right)$ и сжатие $K_1\in\mathcal{B}\left(\mathcal{H}\right)$, такие, что $A_{11}=C_1$ $(K_1-1_{\mathscr{H}})$, $A_{12}=\mathrm{i}C_1$ $(K_1+1_{\mathscr{H}})$.

Доказательство. Равносильность утверждений а), б) и е) устанавливается на основании результатов, изложенных в работе [7] (см. также [10]). Справедливость импликаций б) \Rightarrow в) и в) \Rightarrow б) следует из основных свойств семидефинитных линеалов в пространстве с индефинитной метрикой

[2, 5]. Далее, из условия (4) и того, что R (A) = $\mathcal{H} \oplus \mathcal{H}$, вытекает, что R (A_{11} + iA_{12}) = \mathcal{H} , поэтому [3] утверждения в), г) и д) равносильны. Равносильность утверждений б) и ж) доказана в работе [4].

Следствие. Если S максимально диссипативен, то таковым является

и L_2

 \check{K} ак следует из изложенного, если S максимально диссипативен, то, не ограничивая общности, можно считать, что

$$A_{11} = K_1 - 1_{\mathcal{H}}, \quad A_{12} = i(K_1 + 1_{\mathcal{H}}),$$
 (5)

где K_1 — сжатие в \mathcal{H} . Здесь предполагаем, что это условие выполнено и оператор K_1 , фигурирующий в (5), унитарен, т. е. $L_1=L_1^*$ [4]. Выясним, при каких A_{21} и A_{22} оператор S максимально диссипативен.

Лемма 1. Пусть \mathcal{H}_1 , \mathcal{H}_2 — гильбертовы пространства, а

$$X = \begin{pmatrix} 0 & X_{12} \\ X_{12}^* & X_{22} \end{pmatrix}.$$

— неотрицательный оператор из \mathcal{B} ($\mathcal{H}_1 \oplus \mathcal{H}_2$). Тогда $X_{12}=0$, $X_{22}\geqslant 0$. \mathbb{D} о к а з а т е л ь с т в о. Пусть $h_j \in \mathcal{H}_j$, j=1, 2 и $h=(h_1,\ h_2)$. Имеем $0 \leqslant (Xh\mid h)=2$ Re $(X_{12}h_2\mid h_1)+(X_{22}h_2\mid h_2)$. В частности, если $h_1=\lambda X_{12}h_2$, где λ — произвольное комплексное число, то $0\leqslant 2\lambda \|X_{12}h_2\|^2+(X_{22}h_2\mid h_2)$. Но это возможно только при $X_{12}=0$, $X_{22}\geqslant 0$.

Теорема 2. Пусть выполнены все предположения настоящего пункта. Для того чтобы S был максимально диссипативным, необходимо и достаточно, чтобы существовал диссипативный оператор $V \in \mathcal{B}(\mathcal{H})$, такой, что

$$A_{21} = -\frac{i}{4} (K_1 + 1_{\mathcal{H}}) + V (K_1 - 1_{\mathcal{H}}), \quad A_{22} = \frac{1}{4} (K_1 - 1_{\mathcal{H}}) + iV (K_1 + 1_{\mathcal{H}}).$$
(6)

Доказательство. Достаточность условий (6) очевидным образом вытекает из теоремы 1. Покажем их необходимость. Для этого введем в рассмотрение операторы $U_i':\mathcal{H}\to D$ (L), определяемые из соотношений $\forall\,h\in\mathcal{H},\,\forall\,y\in D$ (L) ($U_iy\mid h$) $_{\mathcal{H}}=(y\mid U_ih)_L$, j=1, 2, где ($\cdot\mid\cdot$) $_L$ — скалярное произведение графика оператора L. Применяя (4), (5) и учитывая унитарность K_1 , нетрудно показать, что

$$0\leqslant J-AJA^*=\begin{pmatrix}0&\mathrm{i}U_1LU_2^{'}+\mathrm{i}1_{\mathscr{H}}\\\mathrm{i}U_2LU_1^{'}-\mathrm{i}1_{\mathscr{H}}&\mathrm{i}U_2LU_2^{'}\end{pmatrix}.$$

Следовательно, в силу леммы 1 $U_2LU_1'=1_{\mathscr{H}}$, $\mathrm{i}U_2LU_2'\geqslant 0$. Далее полагаем $U_3=U_2-\left(-\frac{\mathrm{i}}{4}\left(K_1+1_{\mathscr{H}}\right)\Gamma_1+\frac{1}{4}\left(K_1-1_{\mathscr{H}}\right)\Gamma_2\right)$. Легко видеть, что $U_3LU_1'=0$. Поэтому, рассуждая так же, как при доказательстве следствия 4.6.13 из работы [7], убеждаемся в существовании $V\in \mathscr{B}\left(\mathscr{H}\right)$ такого, что $U_3>>V_1U_1$. Диссипативность V следует из соотношения $\mathrm{i}U_2LU_2'=2$ Im V. Изложенные выше результаты имеют непосредственное отношение

Изложенные выше результаты имеют непосредственное отношение к одной задаче отыскания неизвестных блоков операторной матрицы. Пусть \mathcal{H} — сепарабельное гильбертово пространство, а J такое же, как и ранее. Каждому оператору $A \in \mathcal{B}$ ($\mathcal{H} \oplus \mathcal{H}$) вида (1) ставим в соответствие две операторные матрицы-строки $A_j = (A_{i1}, A_{i2}), j = 1, 2$, которые будем интерпретировать как отображения $\mathcal{H} \oplus \mathcal{H} \to \mathcal{H}$ [8]. Обозначим через G множество всех корректно обратимых J-бинерастягивающих в смысле работы [1], т. е. таких, что $AJA^* \leqslant J$ и $A^*JA \leqslant J$, операторов $A \in \mathcal{B}$ ($\mathcal{H} \oplus \mathcal{H}$). Далее полагаем

$$G_{c} = \{A_{1} = (A_{11}, A_{12}) \in \mathcal{B} (\mathcal{H} \oplus \mathcal{H}, \mathcal{H}) : A_{1}JA_{1}^{*} \leq 0, (A_{11} + iA_{12})^{-1} \in \mathcal{B} (\mathcal{H})\},$$

$$G_{i} = \{A_{1} \in G_{c} : (A_{11} - iA_{12})^{-1} \in \mathcal{B} (\mathcal{H})\},$$

$$G_{u} = \{A_{1} \in G_{i} : A_{1}JA_{1}^{*} = 0\}.$$

Ниже исследуется вопрос о нахождении неизвестных блоков A_{21} , A_{22} матрицы $A\in G$ вида (1) по заданным блокам A_{11} , A_{12} (ср. с задачей, решенной

в работе [9]).

Прежде всего отметим, что необходимое условие разрешимости задачи имеет вид $A_1 \in G_c$. При этом решение A_2 также принадлежит классу G_c . Далее $A_j = (A_{j1}, A_{j2}) \in G_c$ тогда и только тогда, когда существуют гомеоморфизм $C_j \in \mathcal{B}$ (\mathcal{H}) и сжатие $K_j \in \mathcal{B}$ (\mathcal{H}) такие, что

$$A_{j1} = C_i(K_i - 1_{\mathcal{H}}), \quad A_{j2} = iC_i(K_i + 1_{\mathcal{H}}),$$
 (7)

причем требование $A_i \in G_i$, а следовательно, $A_i \in G_u$, равносильно кор-

ректной обратимости соответственно унитарности оператора K_i .

Справедливость перечисленных утверждений очевидным образом вытекает из теоремы 1 и следствия, если учесть, что для всякого гильбертова пространства \mathcal{H} существует симметрический оператор L_0 , для которого (при соответствующем выборе Γ_1 и Γ_2) (\mathcal{H} , Γ_1 , Γ_2) является пространством граничных значений. Например, в качестве L_0 можно взять минимальный оператор, порожденный в L_2 (\mathcal{H} ,] 0, 1[) выражением іy'.

Перейдем к решению нашей задачи. Пусть сначала $A_1 \in G_u$. В этом

случае, как показывает теорема 2, общее решение имеет вид

$$A_{21} = (C_1^{-1})^* \left(-\frac{i}{4} (K_1 + 1_{\mathcal{H}}) + V (K_1 - 1_{\mathcal{H}}) \right),$$

$$A_{22} = (C_1^{-1})^* \left(\frac{1}{4} (K_1 - 1_{\mathcal{H}}) + iV (K_1 + 1_{\mathcal{H}}) \right),$$
(8)

где C_1 и K_1 определяются по A_{11} , A_{12} согласно формулам (7), а $V \in \mathcal{B}$ (\mathcal{H}) диссипативный оператор.

Нетрудно показать, что задача разрешима при любом $A_1 \in G_i$. Действи-

тельно, положим

$$A_{21} = -\frac{\mathrm{i}}{2} (C_1^{-1})^* (1_{\mathcal{H}} + K_1 K_1^*)^{-1} (K_1 + 1_{\mathcal{H}}),$$

$$A_{22} = \frac{1}{2} (C_1^{-1})^* (1_{\mathcal{H}} + K_1 K_1^*)^{-1} (K_1 - 1_{\mathcal{H}}).$$

Непосредственная проверка показывает, что $A \in G$.

Очевидно, что при указанном выборе A_{21} и A_{22} отображение $A_1\mapsto A$ непрерывно на G_i . Однако даже в случае, когда dim $\mathcal{H} < \infty$, его нельзя продолжить по непрерывности до отображения $G_c \to G$. Более того, в указанном случае не существует непрерывного отображения $(A_{11}, A_{12}) \mapsto (A_{21}, A_{22})$ из G_c в себя такого, что оператор (1) обратим в \mathcal{B} ($\mathcal{H} \oplus \mathcal{H}$). Действительно, если это не так, то в силу формул (7) существует не-

прерывное отображение $K_1 \mapsto K_2$ из единичного шара пространства $\mathcal{B}(\mathcal{H})$

в себя такое, что оператор

$$\begin{pmatrix} K_1 - \mathbf{1}_{\mathscr{H}} & \mathrm{i}\left(K_1 + \mathbf{1}_{\mathscr{H}}\right) \\ K_2 - \mathbf{1}_{\mathscr{H}} & \mathrm{i}\left(K_2 + \mathbf{1}_{\mathscr{H}}\right) \end{pmatrix}$$

обратим в \mathcal{B} ($\mathcal{H}\oplus\mathcal{H}$) при всех указанных K_1 и K_2 . Но это невозможно, так как в силу известной теоремы Шаудера [6] отображение $K_1 \mapsto K_2$ имеет

неподвижную точку.

Исходя из теорем 1 и 2 и рассуждая так же, как и выше, легко убедиться, что оператор $A \in \mathcal{B}$ ($\mathcal{H} \oplus \mathcal{H}$) вида (1) J-унитарен (т. е. что $AJA^* = J$ и $A^*JA = J$) тогда и только тогда, когда существуют корректно обратимый C_1 , унитарный K_1 и самосопряженный V операторы из \mathcal{B} (\mathcal{H}), такие, что блоки оператора A могут быть представлены в виде (7) — (8).

1. Гинзбург Ю. П. О Ј-нерастягивающих операторах в гильбертовом пространстве.— Научн. зап. физ.-мат. ф-та Одес. пед. ин-та, 1958, 22, № 1, с. 13—20.
2. Гинзбург Ю. П., Иохвидов И. С. Исследования по геометрии бесконечномерных пространств с билинейной метрикой.— Успехи мат. наук, 1962, 17, № 5, с. 3—56.

3. Като Т. Теория возмущений линейных операторов. — М.: Мир, 1972. — 740 с.

4. Конубей А. Н. О расширениях симметрических операторов и симметрических бинарных отношений.— Мат. заметки, 1975, 17, № 1, с. 41—48.

5. *Крейн М. Г.* Введение в геометрию индефинитных J-пространств и теорию операторов в этих пространствах. — В кн.: Вторая летняя математическая школа (Кацивели,

июнь — июль, 1964 г.) Киев: Наук. думка, 1965, ч. 1, с. 15—92. 6. *Лопатинский Я. Б.* Введение в современную теорию дифференциальных уравнений

частных производных.— Киев: Наук. думка, 1980.— 216 с. 7. Лянце В. Э., Сторож О. Γ . Методы теории неограниченных операторов.— Киев: Наук. думка, 1983.— 206 с. 8. *Халмош П*. Гильбертово пространство в задачах.— М.: Мир, 1970.— 352 с.

9. *Шмульян Ю. Л., Яновская Р. Н.* О блоках сжимающей операторной матрицы.— Изв. вузов. Математика, 1981, № 7, с. 72—75.

10. Штраус А. В. О расширениях и характеристической функции симметрического оператора. — Изв. АН СССР. Сер. мат., 1968, 32, № 1, с. 186—207.

Ин-т прикл. пробл. механики и математики АН УССР, Львов Получено 12.10.83

УДК 517.949.8

Р. В. Фильц

ЧИСЛЕННЫЙ АЛГОРИТМ АППРОКСИМАЦИИ ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ ПОЛНЫМИ ПОЛИНОМАМИ **И ЕГО ПРИМЕНЕНИЕ К АЛГЕБРАИЗАЦИИ** ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ МАТЕМАТИЧЕСКОЙ ФИЗИКИ

Сеточные методы решения краевых задач математической физики основаны на алгебраизации дифференциальных уравнений в частных производных путем аппроксимирования искомой функции в некоторой окрестности рассматриваемой точки пространства независимых переменных. Наиболее часто в качестве аппроксимирующих функций используются степенные полиномы. Замена дифференциальных операторов разностными выполняется для каждого типа дифференциальных уравнений или системы, как правило, на базе частных аналитических приемов, изучение и реализация которых даже в случае двух независимых переменных связаны с большими затратами высококвалифицированного труда, в особенности для шаблонов нерегулярной структуры с большим числом узлов 1. В связи с этим представляются целесообразными составление общих алгоритмов вычисления коэффициентов аппроксимирующих функций и замена дифференциальных операторов разностными для шаблонов с произвольным расположением узлов и при использованни для аппроксимации полных полиномов произвольной степени. Такие алгоритмы должны быть представлены в виде последовательности аналитических выражений, удобных для непосредственного программирования на ЭВМ.

Изложим сущность этих алгоритмов в такой последовательности: вначале рассмотрим задачу аппроксимации функции двухмерного аргумента полиномом второй степени, обобщим результаты на пространство произвольного числа измерений и произвольную степень полинома, после чего проиллюстрируем применение этих результатов на конкретных дифференциальных уравнениях математической физики.

Пусть для функции

$$U = U[x, y], \tag{1}$$

имеющей в окрестности точки P(x, y) конечные производные до третьего порядка и заданной в окрестности этой точки значениями $U_i = U\left[x_i, y_i\right]$ (i=1,6) в шести точках, требуется построить аппроксимирующий полином

¹ Годунов С. К., Рябенький В. С. Разностные схемы.— М.: Наука, 1977.— 439 с.