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ON FEEBLY COMPACT SEMITOPOLOGICAL SEMILATTICE €Xp, |

We study feebly compact shift-continous topologies on the semilattice (exp,!;1).
It is proved that such T;-topology is sequentially pracompact if and only if it is
D(W) -compact.
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We shall follow the terminology of [4, 9, 10, 23]. If X is a topological
space and A X, then by cly,(A) and inty (A) we denote the closure and the
interior of A in X, respectively. By w we denote the first infinite cardinal
and by ¥ the set of positive integers. By D(w) and j we denote an infinite
countable discrete space and the real numbers with the usual topology,
respectively.

A subset A of a topological space X is called regular open if
inty (cly (A)) = A.

We recall that a topological space X is said to be

semiregular, if X has a base consisting of regular open subsets;
compact, if each open cover of X has a finite subcover;

sequentially compact, if each sequence of points of X has a
convergent subsequence in X;

countably compact, if each open countable cover of X has a finite
subcover;

H -closed, if X is a closed subspace of every Hausdorff topological
space in which it is contained;

infra H -closed, if any continuous image of X into any first countable
Hausdorff space is closed (see [18]);

totally countably pracompact, if there exists a dense subset D of the
space X such that each sequence of points of the set D has a
subsequence with the compact closure in X ;

sequentially pracompact, if there exists a dense subset D of the space

X such that each sequence of points of the set D has a convergent
subsequence ([15]);

countably compact at a subset A1 X if every infinite subset Bi A
has an accumulation point x in X; '

countably pracompact, if there exists a dense subset Aof X such that
X is countably compact at A;

selectively sequentially feebly compact, if for every family {U, :n1 ¥}
of nonempty open subsets of X, one can choose a point x,1 U, for

every nl ¥ in such a way that the sequence {x,:nl ¥} has a
convergent subsequence [7];
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sequentially feebly compact, if for every family {U, :nT ¥} of non-
empty open subsets of X, there exists an infinite set Ji ¥ and a
point x1 Xsuch that the set {n1 J:W 1U, =4 is finite for every
open neighborhood W of x, see [8];

selectively feebly compact, for each sequence {U,:nl ¥} of non-
empty open subsets of X, one can choose a point x1 X and a point
x, 1 U, for each nT ¥ such that the set {nT ¥:x,T W} is infinite
for every open neighborhood W of x [7];

feebly compact if each locally finite open cover of X is finite [3];

d -feebly compact (or DFCC), if every discrete family of open subsets
in X is finite [21];

pseudocompact, if X is Tychonoff and each continuous real-valued
function on X is bounded,;

Y -compact (for some topological space Y), if for any continuous
mapf: X ® Y aset f(X) is compact.

The following diagram describes relations between the above defined
classes of topological spaces.

‘ sequentially compact compact
\ regular
\ sequential |
totally countabi},ur
T3 -space+ \{ countably compact pracompact
scattered
A
sequentially pracompact countably
pracompact normal
selectivelly sequentially sequentially feebly d-feebly Hi-diosed
feebly compact compact compact

v

selectively feebly
compact

Fréchet_l_;rysohn yﬁgﬂ/
feebly compact ‘

l
‘ infra H-closed }-Tychono

[ R-compact ]

l

‘ D{w)-compact ‘

A semilattice is a commutative semigroup of idempotentss On a
semilattice S there exists a natural partial order, namely, for any elements e
and fof S e £ fif and only if ef = fe =e. For any element e of a semilattice

S we put
={fl S:e£f}.

17



A topological (semitopological) semilattice is a topological space together
with a continuous (separately continuous) semilattice operation. If S is a
semilattice and t is a topology on S such that (S,t) is a topological
semilattice, then we shall call t a semilattice topology on S, and if t is a
topology on S such that (S,t) is a semitopological semilattice, then we shall
call t a shift-continuous topology on S.

For an arbitrary positive integer n and an arbitrary non-zero cardinal |
we put

exp, | ={AT I :|A|E£n}.

It is obvious that for any positive integer n and any non-zero cardinal |
the set exp,| with the binary operation 1 is a semilattice. Later in this
paper by exp,| we shall denote the semilattice (exp,|;1).

This paper is a continuation of [16] and [17]. In [16] we studied feebly
compact semitopological semilattices exp,! . Therein, all compact T, -to-
pological semilattices exp, | were described. In [16] it was proved that for an
arbitrary positive integer n and an arbitrary infinite cardinal | every
T;-semitopological countably compact semilattice exp, | is compact topological
semilattice. Also, there we constructed a countably pracompactH -closed
quasiregular non-semiregular topology t%, such that (expzl ,t%c) is a semi-
topological semilattice with the discontinuous semilattice operation and show
that for arbitrary positive integer n and arbitrary infinite cardinal | a
semiregular feebly compact semitopological semilattice exp, | is a compact
topological semilattice. In [17] we proved that for any shift-continuous
T, -topology t on exp,| the following conditions are equivalent: (i) t is
countably pracompact; (ii) t is feebly compact; (iii) t is d-feebly compact;
(iv) (exp,!,t) isan H -closed space.

In [2] was proved that every pseudocompact topological group is
sequentially feebly compact. Also, by Corollary 4.6 of [7], the Cantor cube D°
is selectively sequentially feebly compact. By [9, Theorem 3.10.33] D° is not
sequentially compact. Therefore, the compact topological group G =D° is
selectively sequentially feebly compact but not sequentially feebly compact.
Also, there exists a dense subgroup of ¢%, where ¢4 is the c -th Tychonoff

power of the discrete cyclic two-element group, which is selectively
pseudocompact but not selectively sequentially pseudocompact [24]. This and
our above results of [16] and [17] motivates us to establish selective

(sequential) feeble compactness of the semilattice exp, | as a semitopological
semigroup.

Namely, we show that a T, -semitopological semilattice exp,! is
sequentially countably pracompact if and only if it is D(w)-compact.

Lemma 1. Let n be any positive integer and | be any infinite cardinal.
Then the set of isolated points of a T, -semitopological semilattice exp,| is
dense in it.

P r o o f. Fix an arbitrary non-empty open subset U of exp,| . There
exists y1 exp,| such that - y I U ={y}. By Proposition 1(iii) from [16], - y
is an open-and-closed subset of exp, | , so y is an isolated point of exp,| . 4
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A family of non-empty sets {A, :il 1} is called a D-system (a sunflower
or a D-family) if the pairwise intersections of the members is the same, ie,
A;CA; =S for some set S (for it j in 1) [20]. The following statement is

well known as the Subnlower Lemma or the Lemma about a D-system (see
[20, p. 107]).

Lemma 2. Every infinite family of n-element sets (n <w) includes an
infinite D-subfamily.

Proposition 1. Let n be any positive integer and | be any infinite
cardinal. Then every feebly compact T, -semitopological semilattice exp,| is
sequentially pracompact.

P r oo f Suppose to the contrary that there exists a feebly compact
T, -semitopological semilattice exp,| which is not sequentially pracompact.
Then every dense subset D of exp,| contains a sequence of points from D

which has not a convergent subsequence.
By Proposition 1 of [17] the subset exp,| \exp,.,| is dense in exp,|

and by Proposition 1 (ii) of [16] every point of the set exp,| \exp,. ;! is
isolated in exp, ! Then the set exp,| \exp,.,| contains an infinite sequence
of points {x, :pT ¥} which has not a convergent subsequence. By Lemma 2
the sequence {x, :pl ¥} contains an infinite D-subfamily, that is an infinite
subsequence  {Xx, :il ¥} such that there exist xI exp,| such that
Xp; C Xy, =x for any distinct ijl ¥,

Suppose that x =0 is zero of the semilattice exp, | . Since the sequence

{Xp, ;i1 ¥} is an infinite D-subfamily, the intersection {x, :il ¥C-y

Pi
contains at most one set for every non-zero element y1 exp,| . Thus exp, |
contains an infinite locally finite family of open non-empty subsets which
contradicts the feeble compactness of exp,| .

If x is a non-zero element of the semilattice exp, | then by Proposition
1 (ii) of [16], - x is an open-and-closed subspace of exp,| , and hence by
Theorem 14 from [3] the space - x is feebly compact. We observe that x is
zero of the semilattice - x which contradicts so similarly the previous part of
the proof. We obtain a contradiction. ¢

Proposition 2. Let n be any positive integer and | be any infinite
cardinal. Then every feebly compac T, -semitopological semilattice exp,| is
totally countably pracompact.

Proof We put D=exp,!l \exp,.;!| . By Propositionl of [17] the
subset D is dense in exp,| and by Proposition 1 (ii) of [16] every point of
the set D is isolated in exp,| . Fix an arbitrary sequence {X, ‘pl ¥} of
points of D. By Lemma 2 the sequence {x, :p1 ¥} contains an infinite

D -subfamily.
Suppose that x =0 is the zero of the semilattice exp,| . Since the

sequence {xpi:iT ¥} is an infinite D-subfamily, the intersection
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{x, :il ¥JC - y contains at most one point of the sequence for every non-

Pi
zero element yl exp,| . By Proposition 1 (ii) of [16] for every point
al exp, | \{0} there exists an open neighbourhood U(a) of a in exp, | such
that U(a) i - a and hence our assumption implies that zero 0 is a unique
accumulation point of the sequence {x, :il ¥}. Since by Lemma 1 from [16]
for an arbitrary open neighbourhood W(0) of zero 0 in exp,| there exist

finitely many non-zero elements y,,%,y, 1 exp,| such that
(expn | Gexpyl)i WOE - y, ELE - y,,
we get that cCly, | (X, :iT ¥})={0}E{x, :il ¥} is a compact subset of
exp, | .
If x is a non-zero element of the semilattice exp,, | then by Proposition
1 (ii) of [16], - x is an open-and-closed subspace of exp,| , and hence by

Theorem 14 of [3] the space - x is feebly compact. Then x is zero of the
semilattice - xand by the previous part of the proof we have that
Clexp, 1 {Xp, 11T ¥)={}E{x, :il ¥} is a compact subset of the

semilatticeexp,, | . ¢

Proposition 3. Let n be any positive integer and | be any infinite
cardinal. Then every D(w)-compact T, -semitopological semilattice exp, | is
feebly compact.

P roof Suppose to the contrary that there exist a D(w)-compact
T, -semitopological semilattice exp,| which is not feebly compact. Then there
exists an infinite locally finite family U ={U;} of open non-empty subsets of
exp, | . Without loss of generality we may assume that the family U = {U;} is
countable, ie, U ={U, :il ¥}. Lemma 1 implies that for every U, 1 U there
exists a; 1 U; such that U" ={{a;,}:il ¥} is a family of isolated points of
exp, | . Since the family U is locally finite, without loss of generality we may
assume that a; * a; for distinct i,jT ¥. The family U" is locally finite as

refinement of a locally finite familly U . Since exp,| is a T,-space, UU" is a

closed subset in exp,| and hence the map f:exp,| ® ¥,, where ¥, is the
set of positive integers with the discrete topology, defined by the formula

i 1 ifbl exp,l \UUT;
flb) =1 _ .
fi+1, ifb=a; forsomeil ¥,
is continuous. This contradicts D(w)-compactness of the space exp,! ,
because every two infinite countable discrete spaces are homeomorphic. ¢

We summarise our results in the following theorem.

Theorem 1. Let n be any positive integer and | be any infinite cardinal.
Then for any T, -semitopological semilattice exp, | the following conditions
are equivalent:

(i) exp,! is sequentially pracompact;
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(i) exp, | is totally countably pracompact;

(iif) exp, | is feebly compact;

(iv) exp, | is D(w)-compact.

P r o o f. Implications (i) b (iii), (ii) P (iii) and (iii) P (iv) are trivial.
The corresponding their converse implications (iii) P (i), (iii) P (ii) and
(iv) b (iii) follow from Propositions 1, 2 and 3, respectively. ¢

It is well known that the (Tychonoff) product of pseudocompact spaces is
not pseudocompact (see [9, Section 3.10]. On the other hand Comfort and Ross
in [6] proved that a Tychonoff product of an arbitrary non-empty family of
pseudocompact topological groups is a pseudocompact topological group.
Ravsky in [22] generalized Comfort-Ross Theorem and proved that a
Tychonoff product of an arbitrary non-empty family of feebly compact
paratopological groups is feebly compact. Also, a counterpart of the Comfort-
Ross Theorem for pseudocompact primitive topological inverse semigroups
and primitive inverse semiregular feebly compact semitopological semigroups
with closed maximal subgroups were proved in [11] and [14], respectively.

Since a Tychonoff product of H-closed spaces is H-closed (see [5],
Theorem 3] or [9, 3.125 (d)]) Theorem 1 implies a counterpart of the Comfort-

Ross Theorem for feebly compact semitopological semilattices exp, | :

Corollary 1. Let {expni il I} be a family of non-empty feebly
compact T, -semitopological semilattices and n; T ¥ for all il 1. Then the
Tychonoff product (Nj{expni il I} is feebly compact.

Definition 1. If {X; :i1 1} is a family of sets, X = (”){xi (i1 1} is their

Cartesian product and p is a point in X, then the subset
S(p,X) ={xT X:[{iT 1:x()* pei}|Nw}
of X is called the S-product of {X; :iT 1} with the basis pointpT X. In the
case when {X;:il 1} is a family of topological spaces we already assume
that S(p, X) is a subspace of the Tychonoff product X = (~){Xi Gil 1},
It is obvious that if {X;:il 1} is a family of semilattices then

X:(N){Xi:iT I} is a semilattice as well Moreover S(p,X) is a

subsemilattice of X for arbitrary pT X. Then Theorem 1 and Proposition 2.2
of [15] imply the following corollary.

Corollary 2. Let {expni il I} be a family of non-empty feebly
compact T, -semitopological semilattices and n; 1 ¥ for all il 1. Then for
every point p of the product X = (Nj{expni il I} the S-product S(p, X)

is feebly compact.
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MPO CJIABKO KOMIMAKTHY HAMIBTOMOJIOIN4YHY HAMIBIrPATKY eXp,, |

B cmammi 00caidncyiombesi MPAHCASYIUHO HenepepsHi monoaozii t Ha Hanigepamyi
(expy ;1) . Josedeno, wo mpancasyitino nenepepsna Ti-monoaozia t na (exp,|;1)
€ CexBeHUIaAbHO NPAKOMNAKMHOI0 Mo i Auwe modi, xoau gona € D(W) -xomnarxmmoro.
Katouo6i caosa: Haniemonoaoziuni Haniezpamxa, caadbxo xomnaxmuuil, H-samxnenu,

mgpa H-zamrnenud, Y-xomnakmuui, cexseHylanbHO 3ATUEHHO NPAKOMNAKMHUL,
CeneKMUBHO CeKBeHYIAABHO CAAOKO KOMNAKMHUIL, CereKMusHo caadKo Komnaxm-

mul, ceweenu,ianbno caa6Ko ’ICO./VLTL(I’IC’VTLH’U/IZ, aAema NpPo COHAWHUK, D—cucmema.

O CJIABO KOMMAKTHOW NONyTONONOrMYECKOWN NYNYPELWIETKE exp,, |
B cmamve uccaedyromcs MPAHCAAYUOHHO HenpepbuieHble monoaozuu t na noaype-
wemxe (expn [ I). Joxa3ano, ¥mo MPaHCAAYUOHHO HenpepbleHas Tl -monoaozus t

na (expy, 1 1), cexsenyuaavrno nparxomnaxmua moavko mozda, xozda ona D(W) -rom-
naxmua.

Katoueevie ca08a: noaymonoaozuneckas nosypewemxa, caabo xomnakmuosit, H-zamx-
Hymolil, uHnPpa H-zamxnymsuiil, Y-xomnakmusii, CeK8eHYUAABHO CUETHO
NPAKOMNAKMHBLU, CENeKMUBHO CeKBEHYUAABHO CAAD0 KOMNAKMHBLL, CereKmusHo
cAa60 KOMNAKMHBLUL, CeKBEHYUAABHO CAA00 KOMNAKMHDBLU, AemMmad O NoOcoarYXe,

D -cucmema.
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