УДК 539.3

Б. В. Нерубайло, Н. Г. Серпилина, И. И. Федик

ПОЛУБЕСКОНЕЧНАЯ ЦИЛИНДРИЧЕСКАЯ ОБОЛОЧКА Со свободным краем при действии Радиальной нагрузки

Рассмотрим полубесконечную круговую цилиндрическую оболочку со свободным краем под действием радиальной локальной нагрузки. Полное напряженно-деформированное состояние состоит из основного состояния, локального краевого эффекта и изгибного состояния, каждое из которых описывается известными приближенными уравнениями теории оболочек и пластин [1—3]. Плодотворность такого подхода к задачам локального нагружения оболочек показана на примере бесконечно длинной оболочки при действии радиальных сил, приложенных по линиям контура [4].

Задача определения напряженно-деформированного состояния круговой цилиндрической оболочки при действии радиальной нагрузки может быть сведена к решению дифференциального уравнения относительно разрешающей функции:

$$L\Phi(\alpha, \beta) = \frac{R^4}{D} p(\alpha, \beta), \qquad (1)$$

$$L = \nabla^4 \left(\nabla^2 + 1 \right)^2 - 2 \left(1 - \nu \right) \left(\frac{\partial^4}{\partial \alpha^4} - \frac{\partial^4}{\partial \alpha^2 \partial \beta^2} \right) \nabla^2 + \frac{1 - \nu^2}{c^2} \frac{\partial^4}{\partial \alpha^4} \,.$$

Усилия, изгибающие моменты и перемещения связаны с Φ (α , β) известными соотношениями.

Рассмотрим полубесконечную круговую цилиндрическую оболочку со свободным краем под действием самоуравновешенной системы радиальных сил, приложенных по k прямоугольным областям контура на расстоянии ξR от свободного края. Начало координат поместим в середине одной нагруженной области, а нагрузку запишем в виде

$$p(\alpha, \beta) = p_0 \theta(\alpha) \sum_{n=0}^{\infty} \omega_n \cos kn\beta, \qquad (2)$$

где

$$\theta(\alpha) = \begin{cases} 1 \text{ при } |\alpha| \leqslant \alpha_0, \\ 0 \text{ при } |\alpha| > \alpha_0; \end{cases}$$
$$\omega_n = \begin{cases} \frac{k\beta_0}{\pi} & \text{при } n = 0, \\ \frac{2}{\pi n} \sin kn\beta_0 \text{ при } n = 1, 2, 3 \dots \end{cases}$$

Решение разрешающего уравнения (1) ищем в форме

$$\Phi(\alpha, \beta) = \sum_{n=0}^{\infty} \Phi_n(\alpha) \cos kn\beta.$$
(3)

В результате подстановки (2), (3) в (1) получаем обыкновенное дифференциальное уравнение относительно $\Phi_n(\alpha)$:

$$L\Phi_n(\alpha) = -\frac{p_0 R^4}{D} \omega_n \theta(\alpha), \qquad (4)$$

где

$$L = \left(\frac{d^2}{d\alpha^2} - k^2 n^2\right)^2 \left(\frac{d^2}{d\alpha^2} - k^2 n^2 + 1\right)^2 - 2(1 - \nu) \frac{d^2}{d\alpha^2} \left(\frac{d^4}{d\alpha^4} - k^4 n^4\right) + \frac{1 - \nu^2}{c^4} \frac{d^4}{d\alpha^4}.$$

105

Для рассматриваемой здесь оболочки разрешающая функция $\Phi_n(\alpha)$ является решением уравнения (4), значит, должна удовлетворять граничным условиям на бесконечности ($\Phi_n | \rightarrow 0$) и четырем граничным условиям на свободном крае $\alpha = -\xi$:

 $T_1(-\xi) = S(-\xi) = 0$ (тангенциальные граничные условия), (5) $Q'(-\xi) = G_1(-\xi) = 0$ (нетангенциальные граничные условия). (6)

Численная реализация такого решения связана с известными трудностями. Одним из возможных путей построения приближенного решения, обладающего приемлемой точностью и пригодного для практических расчетов, является метод расчленения напряженного состояния, примененный в работе [4] и основанный на результатах асимптотического анализа точных уравнений теорни оболочек [2].

В соответствии с идеей применяемого метода при $n < n^*$ разрешающая функция $\Phi_n(\alpha)$ может быть найдена приближенно, т. е.

$$\Phi_n(\alpha) \approx \Phi_n^0(\alpha) + \Phi_n^k(\alpha).$$

Уравнения для определения $\Phi_n^0(\alpha)$ и $\Phi_n^k(\alpha)$ получаем из (4) путем соответствующего упрощения оператора *L*. Разрешающая функция основного состояния $\Phi_n^0(\alpha)$ определяется из решения уравнения

$$\begin{pmatrix} \frac{d^4}{d\alpha^4} + 4\mu_n^4 \end{pmatrix} \Phi_n^0(\alpha) = \frac{\rho_0 R^2}{Eh} \omega_n \theta(\alpha),$$

$$4\mu^4 = c^2 (1 - \nu^2)^{-1} k^4 n^4 (k^2 n^2 - 1)^2.$$

$$(7)$$

Решением уравнения (7) с учетом граничных условий на бесконечности $(\Phi_n^0| \rightarrow 0)$ является выражение

α→0

$$\Phi_n^0(\alpha) = c_1^0 \theta_n(\alpha) + c_2^0 \zeta_n(\alpha) + \Phi_n^0(\alpha), \qquad (8)$$

$$\theta_n(\alpha) = \exp\left(-\mu_n \alpha\right) \cos\mu_n \alpha, \quad \zeta_n(\alpha) = \exp\left(-\mu_n \alpha\right) \sin\mu_n \alpha.$$

Частное решение $\Phi_n^0(\alpha)$ находим методом интеграла Фурье

$$\frac{ER}{P}\hat{\Phi}_{n}^{0}(\alpha) = \frac{1}{2\pi\alpha_{0}\beta_{0}}\frac{R}{h}\sum_{n}^{n^{*}}\omega_{n}\cos kn\beta\int_{0}^{\infty}\frac{\sin\alpha_{0}\lambda}{\lambda(\lambda^{4}+4\mu_{n}^{4})}\cos \alpha\lambda d\lambda.$$

Произвольные постоянные c_1^0 , c_2^0 должны быть определены из тангенциальных условий (5) на свободном крае. Опуская промежуточные выкладки, записываем окончательные выражения для разрешающей функции и наиболее важных факторов основного состояния:

$$\frac{Eh}{P} \Phi_n^0(\alpha, \beta) = \frac{1}{16\pi\alpha_0\beta_0} \sum_n^{n^*} \frac{\sin kn\beta_0}{n\mu_n^4} \varphi_n(\alpha) \cos kn\beta,$$

$$\frac{Eh}{P} \omega_n^0(\alpha, \beta) = \frac{k^4}{16\pi\alpha_0\beta_0} \sum_n^{n^*} \frac{n^3}{\mu_n^4} \sin kn\beta_0\varphi_n(\alpha) \cos kn\beta,$$

$$\frac{1}{P} G_2^0(\alpha, \beta) = \frac{1}{4\pi\alpha_0\beta_0} \sum_n^{n^*} \frac{\sin kn\beta_0}{n(k^2n^2 - 1)} \varphi_n(\alpha) \cos kn\beta, \qquad (9)$$

$$\frac{1}{P} G_1^0(\alpha, \beta) = \mathbf{v} \frac{1}{P} G_2^0(\alpha, \beta),$$

$$T_1^0(\alpha, \beta) = -\frac{k^2}{8\pi\alpha_0\beta_0} \sum_n^{n^*} \frac{n}{\mu_n^2} \sin kn\beta_0 \left[-c_1^0 \xi_n(\alpha) + c_2^0 \theta_n(\alpha) + fr(|\alpha|) \right] \cos kn\beta,$$

 $\frac{R}{D}$

$$\varphi_n(\alpha) = \tilde{c_1^0} \theta_n(\alpha) + \tilde{c_2^0} \zeta_n(\alpha) + f(|\alpha|),$$

$$e^{2\mu_{n}\xi}\tilde{c}_{0}^{0} = 2\zeta_{n} (\xi + \alpha_{0}) \theta_{n} (-\xi) - 2\zeta_{n} (\xi - \alpha_{0}) \theta_{n} (-\xi) +$$

$$+ [\zeta_{n} (\xi + \alpha_{0}) - \zeta_{n} (\xi - \alpha_{0})] \zeta_{n} (-\xi) + [\theta_{n} (\xi - \alpha_{0}) - \theta_{n} (\xi + \alpha_{0})] \theta_{n} (-\xi),$$

$$e^{2\mu_{n}\xi}\tilde{c}_{2}^{0} = 2\zeta_{n} (\xi + \alpha_{0}) \zeta_{n} (-\xi) - 2\zeta_{n} (-\xi) \zeta_{n} (\xi - \alpha_{0}) - [\zeta_{n} (\xi + \alpha_{0}) - (\zeta_{n} (\xi - \alpha_{0}))] \theta_{n} (-\xi),$$

$$f (|\alpha|) = \begin{cases} 2 - \theta_{n} (\alpha_{0} - |\alpha|) - \theta_{n} (\alpha_{0} + |\alpha|) & \text{прм} |\alpha| \leq \alpha_{0}, \\ \theta_{n} (|\alpha| - \alpha_{0}) - \theta_{n} (|\alpha| + \alpha_{0}) & \text{прм} |\alpha| > \alpha_{0}, \end{cases}$$

$$f (|\alpha|) = \begin{cases} \zeta_{n} (\alpha_{0} - |\alpha|) + \zeta_{n} (\alpha_{0} + |\alpha|) & \text{прм} |\alpha| \leq \alpha_{0}, \\ \zeta_{n} (|\alpha| + \alpha_{0}) - \zeta_{n} (|\alpha| - \alpha_{0}) & \text{прм} |\alpha| > \alpha_{0}. \end{cases}$$

Рассмотрим простой краевой эффект в месте приложения нагрузки. Назовем его локальным в отличие от обычного краевого эффекта вблизи края и по аналогии с точечным краевым эффектом [5].

Для определения радиального перемещения краевого эффекта, которое играет роль разрешающей функции, из (4) с учетом зависимости между перемещением и разрешающей функцией получаем

$$\left(\frac{d^4}{d\alpha^4} + 4\eta^4\right) \omega^{\kappa}(\alpha) = \frac{p_0 R^4}{D} \omega_n \theta(\alpha), \qquad (10)$$
$$4\eta^4 = 12 \left(1 - \nu^2\right) R^2/h^2.$$

Решение уравнения (10) с учетом граничных условий на бесконечности ($w^k | \underset{\alpha \to \infty}{\to} 0$) имеет вид

$$w^{k}(\alpha) = c_{1}^{k}\theta(\alpha) + c_{2}^{k}\xi(\alpha) + \hat{w^{k}}(\alpha),$$

$$\theta(\alpha) = \exp(-\eta\alpha)\cos\eta\alpha, \quad \zeta(\alpha) = \exp(-\eta\alpha)\sin\eta\alpha.$$
(11)

Частное решение уравнения (10) находим, применяя метод интеграла Фурье, как и в случае основного состояния, а произвольные постоянные c_1^k, c_2^k определяем из нетангенциальных условий (6) на свободном крае. Запишем окончательные выражения для радиального перемещения и основных силовых факторов локального краевого эффекта:

$$\frac{Eh}{P} w^{k}(\alpha, \beta) = \frac{1}{8\alpha_{0}\beta_{0}} \overline{w}^{k}(\alpha) \sum_{n=0}^{n^{*}} \omega_{n} \cos kn\beta,$$

$$\frac{R}{P} T_{2}^{k}(\alpha, \beta) = \frac{8}{8\alpha_{0}\beta_{0}} \overline{w}^{k}(\alpha) \sum_{n=0}^{n^{*}} \omega_{n} \cos kn\beta,$$

$$\frac{1}{P} G_{1}^{k}(\alpha, \beta) = \frac{1}{16\eta^{2}\alpha_{0}\beta_{0}} \overline{g}(\alpha) \sum_{n=0}^{n^{*}} \omega_{n} \cos kn\beta,$$

$$\frac{1}{P} G_{2}^{k}(\alpha, \beta) = \mathbf{v} \frac{1}{P} G_{1}^{k}(\alpha, \beta),$$
(12)

где

$$\begin{split} w^{k}\left(\alpha\right) &= c_{3}\theta\left(\alpha\right) + c_{4}\zeta\left(\alpha\right) + f_{w}\left(\left|\alpha\right|\right);\\ \bar{g}^{k}\left(\alpha\right) &= -\hat{C}_{3}\zeta\left(\alpha\right) + \hat{C}_{4}\theta\left(\alpha\right) + f_{G}\left(\left|\alpha\right|\right);\\ f_{w}\left(\left|\alpha\right|\right) &= \begin{cases} 2 - \theta\left(\alpha_{0} - \left|\alpha\right|\right) - \theta\left(\alpha_{0} + \left(\left|\alpha\right|\right)\right) & \text{при } \left|\alpha\right| \leqslant \alpha_{0},\\ \theta\left(\left|\alpha\right| - \alpha_{0}\right) - \theta\left(\left|\alpha\right| + \alpha_{0}\right) & \text{при } \left|\alpha\right| \leqslant \alpha_{0},\\ f_{G}\left(\left|\alpha\right|\right) &= \begin{cases} \zeta\left(\alpha_{0} - \left|\alpha\right|\right) + \zeta\left(\alpha_{0} + \left|\alpha\right|\right) & \text{при } \left|\alpha\right| \leqslant \alpha_{0},\\ \zeta\left(\left|\alpha\right| + \alpha_{0}\right) - \zeta\left(\left|\alpha\right| - \alpha_{0}\right) & \text{при } \left|\alpha\right| > \alpha_{0}. \end{split}$$

107

Постоянные $\tilde{c}_1^k, \tilde{c}_2^k$ записываются так же, как и в случае основного состояния, достаточно лишь в $\tilde{c}_1^0, \tilde{c}_2^0$ произвести замену μ_n на η . Нетрудно заметить, что поведение всех приведенных факторов (12) при изменении β определяется характером поведения ряда Фурье для нагрузки (2).

Невязка в граничных условиях, появляющаяся за счет раздельного наложения тангенциальных (5) и нетангенциальных (6) граничных условий при $n < n^*$ устраняется с помощью корректирующего краевого эффекта вблизи края $\alpha = -\xi$, построенного следующим образом:

$$Ehw_{n}^{k}(\tilde{\alpha}, \quad \beta) = 2\eta \left[c_{1} \theta(\tilde{\alpha}) - c_{2}\zeta(\tilde{\alpha})\right],$$

$$RT_{2n}^{k}(\tilde{\alpha}, \beta) = -2\eta \left(c_{1}\theta(\tilde{\alpha}) - c_{2}\zeta(\tilde{\alpha})\right],$$

$$\eta G_{1n}^{k}(\tilde{\alpha}, \beta) = -\left[c_{1}\zeta(\tilde{\alpha}) + c_{2}\theta(\tilde{\alpha})\right].$$
(13)

Произвольные постоянные c_1 , c_2 находятся из нетангенциальных граничных условий (6) на свободном крае:

$$G_{1n}(-\xi) = G_{1n}^{k}(-\xi; c_{1}; c_{2}) + G_{1n}(-\xi) = 0,$$

$$Q_{1n}(-\xi) = Q_{1n}^{k}(-\xi; c_{1}; c_{2}) + Q_{1n}^{0}(-\xi) = 0.$$

Здесь G_{1n}^0 (— ξ), Q_{1n}^0 (— ξ) — амплитудные значения продольного изгибающего момента и перерезывающей силы основного состояния при $\alpha = -\xi$.

При $n > n^*$ имеем $\Phi_n(\alpha) \approx \Phi_n^u(\alpha)$. Как и в случае краевого эффекта, вместо разрешающей функции будем оперировать с радиальным перемещением. Для определения $\omega^u(\alpha)$ из (4) с учетом связи между разрешающей функцией и радиальным перемещением получаем

$$\left(\frac{d^2}{d\alpha^2} - k^2 n^2\right)^2 \omega_n^\mu(\alpha) = \frac{p_0 R^4}{D} \omega_n \theta(\alpha).$$
(14)

Решение уравнения (14) с учетом условия на бесконечности ($w^{\mu} \rightarrow 0$) имеет вид

меет вид

$$w_n^u(\alpha) = (c_1^u + c_2^u k n \alpha) \exp(-k n \alpha) + \widehat{w}_n^u(\alpha).$$

Частное решение уравнения (14) определяем по методу интеграла Фурье, а оставшиеся произвольные постоянные c_1^{μ} , c_2^{μ} из нетангенциальных граничных условий (6) на свободном крае. В результате радиальное перемещение и изгибающие моменты в оболочке могут быть записаны в виде

$$\frac{ER}{P} \omega^{\mu}(\alpha, \beta) = \frac{3(1-\nu^{2})}{2\pi k^{4} \alpha_{0} \beta_{0}} \left(\frac{R}{h}\right)^{8} \sum_{n^{*}+1}^{\infty} \frac{\sin kn\beta_{0}}{n^{5}} \cos kn\beta \left\{ [\tilde{c}_{3}^{\mu} + \tilde{c}_{4}^{\mu} kn\alpha] e^{-kn(\alpha+\xi)} + 2f_{w}(|\alpha|) \right\},$$
(15)

$$\frac{1}{P} G_{1n}^{\mu}(\alpha, \beta) = \frac{1}{8\pi k^{2} \alpha_{0} \beta_{0}} \sum_{n^{*}+1}^{\infty} \frac{\sin kn\beta_{0}}{n^{3}} \left\{ [-(1-\nu)\tilde{c}_{3} + (2-(1-\nu)kn\alpha)\tilde{c}_{4}] e^{-kn(\alpha+\xi)} + 2g_{1}(|\alpha|) \right\} \cos kn\beta,$$
(15)

$$\frac{1}{P} G_{2n}^{\mu}(\alpha, \beta) = \frac{1}{8\pi k^{2} \alpha_{0} \beta_{0}} \sum_{n^{*}+1}^{\infty} \frac{\sin kn\beta_{0}}{n^{3}} \left\{ [(1-\nu)\tilde{c}_{3} + (2\nu+(1-\nu)kn\alpha)\tilde{c}_{4}] e^{-kn(\alpha+\xi)} + 2g_{2}(|\alpha|) \right\} \cos kn\beta,$$
(15)

где

$$(1 - v) (3 + v) \tilde{c_3} = \tilde{g} (-\xi) [1 + v - (1 - v) kn\xi] + \tilde{q} (-\xi) [2 + (1 - v) kn\xi];$$

(3 + v) $\tilde{c_4} = \tilde{q} (-\xi) - \tilde{g} (-\xi);$

108

Полное напряженное состояние оболочки получим сложением соответствующих выражений основного состояния (9), локального краевого эффекта (12), корректирующего краевого эффекта (13) и изгибного состояния (15). Результаты расчетов нормальных усилий, изгибающих моментов и радиального перемещения приведены на рис 1—5 для следующих значений параметров: R/h = 100, k = 2, $\alpha_0 = \beta_0 = 0,125$, $\xi = 100$; 1; 0,5; 0,25; 0,125 (кривые 1—5 соответственно). Отметим, что при $\xi = 100$ произведено

сравнение с решением для бесконечно длинной оболочки, найденным на основе полных уравнений теории оболочек с разрешающим уравнением (1). Оно показало удовлетворительное совпадение результатов построенного здесь и точного решений. Влияние величины удаления нагрузки от свободного края достаточно отчетливо видно из представленных на рис. 1—5 кривых.

ЛИТЕРАТУРА

- 1. Власов В. З. Общая теория оболочек. М., Гостехиздат, 1949. 784 с.
- 2. Гольденвейзер А. Л. Теория упругих тонких оболочек. М., Гостехиздат, 1953. 544 с.
- 3. Тимошенко С. П., Войновский-Кригер С. Пластинки и оболочки. М., Физматгиз, 1963. 635 с.
- Нерубайло Б. В. К расчету напряжений в цилиндрических оболочках, загруженных по линиям контура.— Прикл. механика, 1975, 11, № 2, с. 41—48.
 Чернышев Г. Н. О контактных задачах в теории оболочек.— Тр. VII Всесоюз. конф.
- 5. Чернышев Г. Н. О контактных задачах в теории оболочек. Тр. VII Всесоюз. конф. по теории оболочек и пластин. М., 1970, с. 898—903.
- г. Москва

Поступила в редколлегию 15.1Х 1976 г.

УДК 539.3;534.1

В. Г. Костенко

ЕДИНСТВЕННОСТЬ РЕШЕНИЯ ЗАДАЧИ О ВЗАИМОДЕЙСТВИИ УПРУГОЙ ОБОЛОЧКИ С АКУСТИЧЕСКИМИ СРЕДАМИ

Рассмотрим упругую изотропную оболочку V с гладкой границей $S = S_1 + S_2$, внешнюю к V неограниченную акустическую среду Ω_1 и акустический заполнитель Ω_2 оболочки V в процессе их взаимодействия, возникающего под действием внутренних источников колебаний и начального возмущенного состояния в момент t = 0.

Пусть $p_i(t, x)$ — избыточное давление, $v_i^{(t)}(t, x)$ — проекция смещения точки $x = (x_1, x_2, x_3)$ акустической среды $\Omega_i, v_j(t, x)$ — проекция смещения точки x оболочки V на ось ox_i декартовой прямоугольной системы коорди-