Пусть $l(l) \in L$, $\Gamma^* = \{\sigma_{il}, \theta^*\} \in S$ — решение задачи (45) — (50) и $\Gamma =$ $= \{\sigma_{ij}, \theta\} \in S$. Определим функционал $\Omega(\cdot)$ на S:

$$\Omega\left(\Gamma\right) = \int_{p_0}^{\infty} \int_{0}^{\infty} e^{-pt} l * \omega_t\left(\Gamma\right) dt dp = \int_{p_0}^{\infty} \bar{l}\left(p\right) \bar{\omega}_p\left(\bar{\Gamma}\right) dp,$$
(53)

где ω, определяется формулой (51).

Тогда а) $\delta\Omega$ (Г) = 0 тогда и только тогда, если $\Gamma = \Gamma^*$; б) Ω (Г) — $-\Omega$ (Γ^*) > 0, причем равенство выполняется тогда и только тогда, если $\Gamma = \Gamma^*$.

- 1. Дэй У. А. Термодинамика простых сред с памятью. М.: Мир, 1974. 190 с.
- 2. Карнаухов В. Г., Сенченков И. К. Варнационный принцип для связанных динамических задач линейной вязкоупругости.— Прикл. механика, 1977, 13, № 8, с. 113—117.
- 3. Трусделл К. Первоначальный курс рациональной механики сплошных сред. М. : Мир, 1975.— 592 c.
- Gurtin M. E., Herrera I. On dissipation inequalities and linear viscoelasticity.— Quart. Appl. Math., 1965, 23, N 3, p. 235—245.
 Leitman M. J. Variational principles in the linear dynamic theory of viccelasticity.— Quart. Appl. Math., 1966, 24, N 1, p. 37—46.
- 6. Reiss R. Minimum principles for linear elastodynamics .- J. Elast., 1978, 8; N 1, p. 35-45

.

Институт механики АН УССР

Поступила в редколлегию 07.02.79

УДК 533.6.013.42

Я. С. Подстригач, В. В. Пороховский, А. П. Поддубняк

АНАЛИЗ ПЕРЕИЗЛУЧЕННОГО НЕСТАЦИОНАРНОГО СИГНАЛА ОТ УПРУГОЙ СФЕРЫ ПРИ ВОЗДЕЙСТВИИ ОГРАНИЧЕННОГО ЗВУКОВОГО ПУЧКА

При рассеянии акустической стационарной волны на упругой сплошной сфере амплитуда рассеянного поля сопровождается последовательностью пиков и углублений. Это имеет место как для случая ненаправленного излучения первичного поля [2], так и тогда, когда на объект набегает ограниченный звуковой пучок. Однако в стационарной задаче между случаями направленного и ненаправленного рассеяния имеются глубокие различия. Анализ нестационарного эхо-сигнала при рассеянии плоской волны на стальной упругой сфере в воде был выполнен в работе [5]. В настоящей статье подобный анализ проведен при набегании на объект ограниченного звукового пучка.

В качестве исходных используем результаты работы [1]. При этом импульс посылки принимаем в виде

$$p_{l}(r, \theta, \tau) = p_{*}l_{0}l^{-1}\sin[\omega_{0}(\tau - l)] \left[H(\tau - l) - H(\tau - l - \tau_{0})\right] \times H\left(\sin\psi_{0} - \frac{r}{l}\sin\theta\right) \quad \left(l = \sqrt{l_{0}^{2} - 2rl_{0}\cos\theta + r^{2}}\right), \quad (1)$$

где p_* — постоянная, имеющая размерность давления; l_0 — расстояние от центра сферы до центра излучателя; ω_0 и τ_0 — несущая частота и длительность импульса посылки; ψ_0 — плоский угол развертки характеристики на-правленности излучателя; r, θ — сферические координаты с началом отсчета в центре сферы. Линейные величины системы отнесены к радиусу сферы а; $\tau = ct/a; c$ — скорость звука в жидкости; t — время.

Как и ранее [1—3], предполагаем, что звуковой пучок пересекает сферу т. окружности r = 1, $\theta = \theta_0 < \frac{\pi}{2}$ при соответствующем соотношении между l_0 , ψ_0 и a, в частности при $l_0 \gg 1$.

Расчет эхо-сигнала произведен для точек акустической среды, находятехся вдали от объекта $r \gg 1$ и при условии $l_0 \gg 1$. Соответствующая созмула имеет вид

$$p_e(r, \theta, \tau) = -\frac{p_*}{4\pi r} \int_{-\infty}^{\infty} \tilde{f}(\omega) F^0(\theta, \omega) e^{-i\omega(\tau - l_0 - r)} d\omega, \qquad (2)$$

5,2e

$$\overline{f}(\omega) = \overline{f}_1(\omega) + i\overline{f}_2(\omega);$$

$$\tilde{f}_{1}(\omega) = \frac{1}{2} \frac{\cos \left[(\omega - \omega_{0}) \tau_{0}^{\dagger} - \frac{1}{2} \frac{\cos \left[(\omega + \omega_{0}) \tau_{0} \right]}{\omega + \omega_{0}} - \frac{\omega_{0}}{\omega^{2} - \omega_{0}^{2}} ;$$
$$\tilde{f}_{2}(\omega) = \frac{1}{2} \frac{\sin \left[(\omega - \omega_{0}) \tau_{0} \right]}{\omega - \omega_{0}} - \frac{1}{2} \frac{\sin \left[(\omega + \omega_{0}) \tau_{0} \right]}{\omega + \omega_{0}} .$$

Функция F⁰ (θ, ω) приведена в статье [2].

В качестве формулы для эхо-сигнала, приемлемой для подсчетов на ЭВМ согласно методу Хиклинга [4, 5], использовано выражение

$$P_{e}(r, \theta, \tau) = 2rp_{e}(r, \theta, \tau) =$$

$$= \frac{1}{\pi} \int_{\omega_{1}}^{\omega_{2}} [Q_{1}(\omega) \cos \omega \tau_{1} + Q_{2}(\omega) \sin \omega \tau_{1}] d\omega, \qquad (3)$$

причем

$$Q_{1}(\omega) = \tilde{f}_{1}(\omega) F_{1}(\omega) - f_{2}(\omega) F_{2}(\omega),$$

$$Q_{2}(\omega) = \tilde{f}_{1}(\omega) F_{2}(\omega) + \tilde{f}_{2}(\omega) F_{1}(\omega),$$

$$F_{1}(\omega) + iF_{2}(\omega) = F^{0}(\theta, \omega), \quad \tau_{1} = \tau - (r + l_{0} - 2).$$
(4)

Пределы интегрирования ω_1 и ω_2 выбирались из условия выделения основного вклада спектральных функций Q_1 (ω) и Q_2 (ω).

Численные расчеты получены с помощью ЭВМ «Минск-32» на языке ФОРТРАН-IV для стальной сферы (плотность 7,70 г/см³, скорости продольных и поперечных волн равны 5960 и 3240 м/с) в воде (плотность 1 г/см³, скорость звука 1410 м/с).

На рис. 1—3 изображены импульсы, вычисленные по формулам (3), (4) при $\theta_0 = 15$, 30, 45 в точке излучателя $\theta = 0^{\circ}$, $r = l_0 \gg 1$. Здесь $\theta_0 = \gamma_0 - \psi_0$, причем $\gamma_0 -$ угол отражения граничных лучей звукового пучка от упругой сферы. Несущая частота сигнала посылки $\omega_0 = 20$. Длительность падающего импульса соответственно для каждой из трех фигур рисунка равна 1, 2 и 5.

Анализ этих результатов показывает, что ограниченность звукового пучка существенно влияет на формирование как прямо отраженных, так и периферических импульсов. В частности, при узконаправленном рассеянии основная энергия рассеяного поля в направлении излучателя сосредоточена в первом отраженном сигнале. Вклад вторичных эхо-импульсов несуществен, что согласуется с результатами установившегося режима. Основную роль при формировании эхо-сигнала играет локальная область поверхности объекта вблизи точки, ближайшей к приемнику. Картина постепенно меняется, если набегающий пучок расширяется. При этом амплитуда прямо отраженного сигнала уменьшается, амплитуда вторичных сигналов увеличивается. Отметим, что в структуре импульсов, излученных периферическими волнами, существенного различия не наблюдается уже понера 45°. Однако этого нельзя сказать относительно прямо отраженного ситнала. Если звуковой пучок, набегающий на объект, конечен, то «хвостовая» часть первичного эхо-импульса всегда искажена. Это, по-видимому, связано с влиянием резкого перепада давления акустического поля на поверхности сферы при $\theta = \theta_0$ [3]. Кроме того, неравномерность освещения объекта приводит к непостоянной длительности первого отраженного сигнала. Так, если θ_0 мало, то отраженный сигнал по длительности мало отличается от сигнала

посылки. Однако с ростом θ_0 длительность отраженного сигнала увеличивается. При достаточно больших θ_0 вклад импульсов, излученных краевыми точками $\theta = \theta_0$, r = 1, уменьшается и различия в длительностях падающего и отраженного сигналов опять исчезают.

Если импульс посылки длинный, то первичный и вторичные эхо-импульсы перекрываются. Это видно из последних графиков рис. 1-3, где $\tau_0 = 5$. Известно [5], что при ненаправленном рассеянии отраженный сигнал вследствие интерференции на некотором участке усиливается. Это связано с выбором несущей частоты $\omega_0 = 20$, соответствующей одному из наибольших пиков спектра сигнала. В случае рассеяния на сфере конечного звукового пучка интерференционная картина существенно зависит от его ширины. При этом соответствующий пик в амплитуде спектральной функции при небольших θο может смещаться, т. е. частота ω, выбранная в качестве несущей ω_0 , может быть близкой, но отличной от $\omega_0 = 20$. Амплитуда импульса меняется в зависимости от угла θ₀. Отметим, что при значительных θ_0 ($\theta_0 \ge 45^\circ$) пики и углубления амплитуды спектральной функции принимают устойчивое положение относительно ω, и усиление эхо-сигнала при θ₀ ≥ 45° будет иметь такой же вид, как и при θ₀ = 180°. Однако и в этом случае структура эхо-сигнала все еще существенно зависит от конечности набегающего звукового пучка.

При анализе амплитуды давления в стационарной рассеянной волне выявлено усиленное излучение в направлении $\theta = 23^{\circ}$ при $\theta_{\theta} = 31,56^{\circ}$. На рис. 4 приведены эхо-импульсы, подсчитанные при $\theta_0 = 31,56^{\circ}$, $\omega_0 = 20$, $\tau_0 = 1$, $r = l_0 \gg 1$, $\theta = 10$, 23 и 45°. Из анализа этих результатов следует, что амплитуда первого отраженного сигнала принимает наибольшие значения также при $\theta = 23^{\circ}$. Импульсы, переизлученные поверхностными волнами, в направлениях, отличных от $\theta = 0^{\circ}$, сильно ослаблены, причем это ослабление усиливается с увеличением угла θ . Одной из причин этого явления есть различие в путях прохождения периферических волн одинаковой моды в направлении движения по часовой стрелке и против нее. Вследствие несовпадения времен прибытия двух сигналов одной и той же моды в точку наблюдения поступают вторичные сигналы, длительность которых увеличивается с ростом θ . Очевидно, что при достаточно больших θ и малых τ_0 вторичные сигналы одинаковой моды должны быть разделены.

В случае, когда сигнал посылки достаточно продолжителен (т₀ ≥ 2), прямо отраженный сигнал перекрывается с периферическими импульсами, однако вследствие малой амплитуды последних существенного изменения амплитуды отраженного сигнала не замечено.

Таким образом, учет конечности звукового пучка посылки приводит к новым качественным явлениям в структуре переизлученных и отраженных эхо-сигналов. При надлежащем выборе параметров импульса посылки можно оптимально управлять первичными или вторичными эхо-сигналами, причем существенную роль при этом играет угол развертки характеристики направленности излучателя ψ_0 .

- 1. Поддубняк А. П. Эхо-сигнал от упругой сферы при воздействии остронаправленного звукового импульса. Мат. методы и физ.-мех. поля, 1979, вып. 9, с. 92—95.
- Подстригач Я. С., Поддубняк А. П., Пороховский В. В. Анализ переизлученного сигнала от упругой сферы при воздействии направленной сферической волны. — Мат. методы и физ.-мех. поля, 1980, вып. 11, с. 47—51.
- физ.-мех. поля, 1980, вып. 11, с. 47—51. 3. Подстригач Я. С., Поддубняк А. П., Грилицкий Д. В. Дифракция остронаправленного звукового импульса на акустически мягкой сфере.— Докл. АН УССР. Сер. А, 1978, № 3, с. 230—241.
- 4. Эхо-сигналы от упругих объектов / У. К. Нигул, Я. А. Метсавээр, Н. Д. Векслер, М. Э Кутсер. — Таллин : Изд-во АН ЭССР, 1974. — Г. 1. 346 с.
- 5. *Hickling R*. Analysis of choes from a solid elastic sphere in water.— J. Acoust. Soc. Amer., 1962, 34, N 10, p. 1582—1592.

Институт прикладных проблем механики и математики

Поступила в редколлегию. 02.11.78.