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MATHEMATICAL MODELING OF THE GAS-FILTRATION IN THE 
BOTTOMHOLE ZONE OF UNDERGROUND GAS-STORAGE  
WELLS USING FRACTIONAL DERIVATIVES  
 

The finite element method is applied for the numerical simulation of the gas fil-
tration in a porous inhomogeneous media. The model is based on the fractional 
derivatives with respect to time in terms of the Grünvald – Letnikov operator. The 
numerical analysis results are verified by comparing with the real-life empirical 
data on the physical and geometrical parameters to reveal their excellent agree-
ment. 
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Introduction. Modeling the mass transfer in complex natural porous me-

dia is concerned with enormous indetermination of the parameters characteri-
zing both the media and transferred matter. Practical evaluations are usually 
based on the averaged (homogenized) empirical parameters for making a mo-
del adequate to the processes of interest. This results in narrowing the time-
spatial frameworks of the model and inducing errors of different kinds, which 
are to be encountered for specific processes under investigation. 

Recently, the adequateness criteria became much tighter and thus the 
computational models are to fit more strict requirements with regard to the 
accuracy of computational results. Hence, the advancement in the existing 
models along with the development of the new ones is a topical problem. An 
efficient method for answering this challenge is the application of fractional 
derivatives with respect to time for modeling the mass transfer in complex 
porous media. The advantage of this approach is an opportunity to encounter 
the memory of a process that is critical for the computation of the hydrocar-
bons filtration parameters. 

There exist a number of fractional-differential models of diffusion-like 
transfer processes, see, e. g. [2, 3, 5]. Such models are efficiently used, in par-
ticular, for covering the processes of impurity transfer in geological formati-
ons with a complex and inhomogeneous internal structure [6]. This approach 
has not been widely used, however, for filtration processes in complex inho-
mogeneous porous media (which is engaged with strong nonlinear effects) for 
most of the currently proposed fractional-differential models are linear. Hen-
ce, the adaptation of the fractional-differential approach for modeling of fil-
tration processes in porous media and construction of corresponding nonlinear 
mathematical models of filtration presents a challenge. The construction of 
such models, in particular, will make it possible to adequately predict the 
volume of gas production in formations with natural fractures. 

It is worth noting that the application of fractional derivatives for mode-
ling various processes is concerned with mathematical issues of both theoreti-
cal and practical nature. One of those is the selection of a proper order of the 
fractional derivative. As shown by numerical evaluations, such models appear 
to be very sensitive to the variation of the order of a fractional derivative. 

This work is motivated by the development and analysis of a model for 
gas filtration in porous inhomogeneous media by using the fractional derivati-
ves with respect to time. It is also aimed to clarify the efficient application of 
the fractional derivatives within the framework of mathematical models of 
gas filtration in underground storages.   
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1. Mathematical model. Consider the mass-transfer process in a porous 
medium related to the coordinate system 1 2( , , )x y y . In the case of gas and 
fluid filtration, the process is described by the following equation formulated 
with the fractional derivative in time [1, 2]: 
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Here, =l 1  is the power in the case of an incompressible fluid and =l 2  
stands for a gas, α ∈ (0,2]  is the order of fractional derivative that describes 

the nature of the non-stationary process, = 1 2( , , , )k k x y y t  is the coefficients 

of permeability, = 1 2( , , )m m x y y  is the porosity coefficient, = 1 2( , , )h h x y y  is 

the thickness of the medium, µ  is the dynamic viscosity of substance, atp  
denotes the atmospheric pressure, q  is the extraction density, z  is the 
coefficient of compressibility of gas, for calculation of which a significant 
number of empirical formulas based on experimental data is used, including 

= + [AT]1/(1 )z fp , where −= − × ° × 4(24 0.21 [ C]) 10 ,f T  and [AT] 1 2( , , , )p x y y t  is 

the operational  gas pressure measured in the atmospheres [1]. Gas is extrac-

ted from a porous medium through I  wells located at points ,0 0 0
1, 2,( , )i i ix y y  

and operated during certain periods of time ∈ ,1, 2,[ ]i it t t , = …1,2, ,i I . The 

density of extraction is determined by the following formula: 
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Here, iq  is the gas extraction from the i th well at the moment t , δ( )x  is the 

Dirac delta-function, η −( )jit t  is the Heaviside function, and V  is the storage 

volume. 
The problem implies finding a solution 1 2( , , , )p x y y t  of equation (1) for 

given values of gas extractions in wells of the medium and an impermeability 
condition on an medium circuit under the necessary condition of the gas mass 
conservation in the medium: 

 = ρ∫
V

M dv , 

where M  is the mass of gas in storage, ρ  is the density of gas connected to 

pressure by an equation of state = ρ Θp zR , R  is the gas constant, Θ  is the 
absolute temperature of gas. 

 Let Ω ⊂ ¡3  be a three-dimensional domain which occupies the porous 
medium (Fig. 1) and limited with a boundary surface ∂Ω . Within domain Ω , 
a set of wells is located at points with coordinates 1, 2,( , , )i i ix y y , = …1,2, ,i I , 

and pressures , ,1, 2, 0( , )i i ip x y y t  in these points is given at time 0t . 

Let domain Ω  to consist of a number of layers, the limiting surfaces of 
which are close to horizontal planes. In the case of layers being gas bearing, 
the gas differential pressure between the top and bottom interfaces of a layer 
is negligible. Hence, the processes of gas filtration within such layers is 
irrespective of the vertical coordinate 2y .   
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Fig. 1. Scheme of the considered gas storage. 

Then equation (1) takes the following form: 
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where = 1y y . 

 Assuming the absence of gas supplement into the volume of domain Ω  
through its boundary ∂Ω , the pressure gradient along the normal to the boun-
dary is dismissed and ∂ ∂ =/ 0p n  can be regarded as an appropriate bounda-

ry condition. This condition implies ∂Ω ∂Ω∂ ∂ = ∂ ∂ =( / ) ( / ) 0p x p y .  

By implying the end of the neutral period (which is the period when 
= 0q ) to be a reference point, the initial pressure distribution can be assumed 

constant and equal to a measured value 0p . 

2. Numerical solution scheme. Let us develop an iterative scheme for the 
calculation gas pressure in a layer. Equation (2) can thereby be represented in 
the following form: 
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The linearized version [1, 2] of equation (1) reads 
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where 
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and %p  is an iterative approximate value of solution p  on the previous step of 
iteration. 
 The operator of the fractional derivative can be presented via the Caputo 
formulation, as follows [4, 7] 
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where = α[ ]m , ⋅[ ]  is an integer part of the real number, Γ  is the gamma 
function.  
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This operator can also be presented via the Riemann – Liouville formula-
tion, which has the following form: 

 +
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These two formulations are connected via the following relationship [7]: 
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In order to construct a numerical model for non-stationary problems of 
gas filtration in a porous medium, we employ iteratively the finite element 
method combined with the difference scheme of time discretization in 
Grünwald – Letnikov scheme [1, 7]: 
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where 
j
α  

 
 is the binomial coefficient (the Pochhammer symbol), τ  is a cur-

rent time moment, and ∆t  denotes the discrete time period. During the calcu-
lations, the linearized version of equation (4) is solved iteratively at each time 
interval. The Grünwald–Letnikov operator is approximated on an interval 

τ[0, ]  with the subinterval step ∆t  as 
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are the Grünwald – Letnikov coefficients. We can calculate coefficients α( )
jc  

by using the following recursive formulas [5]: 
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Having used linearization (4) and discretization scheme for the fractional 
derivative (6) – (8), we transform equation (3) to the form: 
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where ( , , , , )F p k h zµ%  is given through formula (5). 

Consider approximation on some extended time interval [0, ]T  that is 

divided into N  subintervals where the subinterval length equals ∆ = /t T N  

and the time-nodes are = ∆it i t . Let the fractional derivative be represented 

via the Grünwald – Letnikov scheme: 
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Finding a generalized solution of problem consists in the minimization of 
the functional 
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and 1a , 2a  are the finite element method coefficients [1]. 

For the representation of the linearized equation in the form (9), the 
scheme of time discretization is used considering that %p  is an iterative appro-
ximate value of the solution p  on the previous step of iteration.  

An important step in this algorithm is to ensure the gas balance during 
the entire non-stationary process. During the sub-diffusion, the distribution of 
the permeability coefficient value is a particular issue. Simply following the 
traditional approach and assuming it to be a constant implies the gas imbalan-
ce. To avoid such a conflict at each iteration in the Grünwald – Letnikov 
scheme, the permeability coefficients in the geometric zones of the largest dif-
ferences in gas pressure are corrected as 

 ∗
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∆ ∆

l
( , )

Q
k x y

S p
 

in order to fulfill the condition 
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for each time point it . Here, M  is the mass of gas in the storage, exM  is the 

mass of extracted gas, ∆l  and ∆S  are the length and cross-sectional area of 
the formation element through which the gas passes, ∆Q  and ∆p  are the 
difference of gas consumption and gas pressure, respectively. 

3. Numerical experiment. The method for adaptation of the gas perme-
ability coefficient is verified with the following numerical experiment. A layer 
of an underground gas storage is considered with the seasonal withdrawal of 
gas from the storage containing a variable number of working wells. The gas 
drowning coefficient is selected according to the described algorithm in the 

areas of the included wells − −∈ × ×13 2 12 2(0.8 10 [m ], 8.8 10 [m ])k . The coeffi-
cient of the fractional derivative of the gas pressure over time was chosen 
within the range [0.94,1]α ∈ .   

The input information was set by the pressures in control, metering, and 
production wells in the neutral period and the values of volumetric gas 
extraction during gas extraction from the storage. 

The numerical results demonstrate the feature of the gas distribution be-
havior in the layer cross-section near the wells (Fig. 2 – Fig. 5), as well as in 
the deposit of underground gas storage. The use of the fractional derivative 
allows for the registration of the adequate qualitative behavior of the pressu-
re function in the well bottoming (Fig. 5 and Fig. 6). In contrast, the classical 
approach would involve some additional analysis for the proper selection of 
adaptive parameters. 
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Fig. 2. The distribution of gas pressure 
for α = 1 , = 50t . 

 

Fig 3. The distribution of gas pressure 
for α = 1 , = 150t . 

 

Fig. 4. The distribution of gas pressure 
for α = 0.97 , = 50t . 

 

Fig 5. The distribution of gas pressure 
for α = 0.97 , = 150t . 

It is worth noting that the criterion for choosing a proper value for the 
order of the fractional derivative depending on the parameters of the process 
remains disputable. In order to achieve a gas balance, the gas permeability 
coefficients are selected separately in different areas of the environment. 

Figures 6 – 8 demonstrate the behavior of gas distribution in the zones 
around the wells and the relationship between permeability coefficients and 
the order of the fractional derivative in the process of gas withdrawal from 
the storage.  
  

 

Fig. 6. The distribution of gas pressure for 
α = 0.94 , % −= × 13 20.8 10 [m ]k . 

 

Fig 7. The distribution of gas pressure for 
α = 0.96 , % −= × 13 20.8 10 [m ]k . 
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Fig. 8. The distribution of gas pressure for α = 0.94 , 

  % −= × 13 21.2 10 [m ]k . 
The analysis of the figures shows that a decrease in the fractional 

derivative parameter leads to an increase in the area of reduced pressure in 
the well vicinity. It is obvious that in practice, the area of reduced pressure is 
closely related to the depression of pressure (or well flow). In the classic ver-
sion, the so-called "pressure hole" in the well area was modeled by changing 
certain parameters of the environment. The use of derivatives of the frac-
tional order ensures the presence of a "pit" without selecting the parameters 
of the environment. Thus, a qualitative picture of pressure behavior is presen-
ted. Conducting numerical experiments based on a real object and real measu-
red data showed the effectiveness of the approaches proposed in this paper 
for the numerical modeling of mass transfer in porous media of complex 
structures. The study of the qualitative properties of the obtained equations, 
as well as the construction of their numerical solutions, are quite non-trivial 
tasks that require independent research in each specific case. 

Conclusions. The approach used in the work to fractional-differential 
filtration models is phenomenological, so the possibility of their application in 
each case should be justified using experimental data confirming the validity 
of the corresponding fractional-differential generalizations. All the filtration 
models obtained in this work belong to the class of anomalous diffusion 
equations. The analysis of results of computing experiment shows that 
depending on a choice of parameter of the derivative order with respect to 
time α , the behavior of the average reservoir pressures doesn't change. It 
occurs because throughout all system operating time, the balance of gas in 
storage is ensured. In the borehole and in boundary area of the layer, the 
behavior of pressures depends on the derivative parameter α . The less the 
parameter α  is then the more the difference between values of the pressure 
in the borehole and boundary area of the layer is. Results of the experiment 
confirm the behavior of gas pressure in the porous media at the presence of 
atypical filtration. If the parameter 1α = , the values of calculated average 
reservoir pressures equal to the experimental data. 

The problem of determining the relationship between the parameters of 
the well bottoming, the parameters of the gas filtration process, and the order 
of the fractional derivative remains unsolved. One of these practical criteria is 
the maintenance of balance ratios that are amenable to experimental measu-
rements. 
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МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ ФІЛЬТРАЦІЇ ГАЗУ У ВИБІЙНИХ ЗОНАХ СВЕРДЛОВИН 
ПІДЗЕМНИХ СХОВИЩ ГАЗУ З ВИКОРИСТАННЯМ ДРОБОВИХ ПОХІДНИХ  
 
Запропоновано числову модель фільтрації газу в пористих неоднорідних середови-
щах з використанням методу скінченних елементів та застосуванням дробових 
похідних за часом, обчислених на основі оператора Грюнвальда – Лєтнікова. 
Результати числового аналізу верифіковано з використанням отриманих з реаль-
ного досліду емпіричних фізико-геометричних параметрів та виявлено їх якісне 
узгодження. 

Ключові слова: математична модель, нестаціонарний рух газу, дробові похідні, 
лінеаризація, метод скінченних елементів. 
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