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MATHEMATICAL MODELING OF THE GAS-FILTRATION IN THE
BOTTOMHOLE ZONE OF UNDERGROUND GAS-STORAGE
WELLS USING FRACTIONAL DERIVATIVES

The finite element method is applied for the numerical simulation of the gas fil-
tration in a porous inhomogeneous media. The model is based on the fractional
derivatives with respect to time in terms of the Griinvald — Letnikov operator. The
numerical analysis results are verified by comparing with the real-life empirical
data on the physical and geometrical parameters to reveal their excellent agree-
ment.

Key words: mathematical model, nonstationary gas motion, fractional derivatives,
linearization, finite element method.

Introduction. Modeling the mass transfer in complex natural porous me-
dia is concerned with enormous indetermination of the parameters characteri-
zing both the media and transferred matter. Practical evaluations are usually
based on the averaged (homogenized) empirical parameters for making a mo-
del adequate to the processes of interest. This results in narrowing the time-
spatial frameworks of the model and inducing errors of different kinds, which
are to be encountered for specific processes under investigation.

Recently, the adequateness criteria became much tighter and thus the
computational models are to fit more strict requirements with regard to the
accuracy of computational results. Hence, the advancement in the existing
models along with the development of the new ones is a topical problem. An
efficient method for answering this challenge is the application of fractional
derivatives with respect to time for modeling the mass transfer in complex
porous media. The advantage of this approach is an opportunity to encounter
the memory of a process that is critical for the computation of the hydrocar-
bons filtration parameters.

There exist a number of fractional-differential models of diffusion-like
transfer processes, see, e. g. [2, 3, 5]. Such models are efficiently used, in par-
ticular, for covering the processes of impurity transfer in geological formati-
ons with a complex and inhomogeneous internal structure [6]. This approach
has not been widely used, however, for filtration processes in complex inho-
mogeneous porous media (which is engaged with strong nonlinear effects) for
most of the currently proposed fractional-differential models are linear. Hen-
ce, the adaptation of the fractional-differential approach for modeling of fil-
tration processes in porous media and construction of corresponding nonlinear
mathematical models of filtration presents a challenge. The construction of
such models, in particular, will make it possible to adequately predict the
volume of gas production in formations with natural fractures.

It is worth noting that the application of fractional derivatives for mode-
ling various processes is concerned with mathematical issues of both theoreti-
cal and practical nature. One of those is the selection of a proper order of the
fractional derivative. As shown by numerical evaluations, such models appear
to be very sensitive to the variation of the order of a fractional derivative.

This work is motivated by the development and analysis of a model for
gas filtration in porous inhomogeneous media by using the fractional derivati-
ves with respect to time. It is also aimed to clarify the efficient application of
the fractional derivatives within the framework of mathematical models of
gas filtration in underground storages.
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1. Mathematical model. Consider the mass-transfer process in a porous
medium related to the coordinate system (x,y,,y,). In the case of gas and

fluid filtration, the process is described by the following equation formulated
with the fractional derivative in time [1, 2]:
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Here, ¢/ =1 is the power in the case of an incompressible fluid and ¢ =2
stands for a gas, a € (0,2] is the order of fractional derivative that describes

the nature of the non-stationary process, k = k(x,y,,Yy,,t) is the coefficients
of permeability, m = m(x,y,,y,) is the porosity coefficient, h = h(x,y,,y,) is
the thickness of the medium, p is the dynamic viscosity of substance, p,,
denotes the atmospheric pressure, g is the extraction density, z 1is the

coefficient of compressibility of gas, for calculation of which a significant
number of empirical formulas based on experimental data is used, including

z=1/(1+ fp[AT]) , Where f =(24- 0.21><T[°C])><10_4, and p[AT](.x', Yy, Ys,t) is
the operational gas pressure measured in the atmospheres [1]. Gas is extrac-

ted from a porous medium through I wells located at points (x?,yf’i,yg’i)
and operated during certain periods of time t e [tl,i,tu], 1=12,...,I. The

density of extraction is determined by the following formula:
I
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Here, q, is the gas extraction from the ¢th well at the moment t, d(x) is the
Dirac delta-function, n(t — tji) is the Heaviside function, and V is the storage
volume.
The problem implies finding a solution p(x,y;,y,,t) of equation (1) for

given values of gas extractions in wells of the medium and an impermeability
condition on an medium circuit under the necessary condition of the gas mass
conservation in the medium:

M = jpdv,
v

where M is the mass of gas in storage, p is the density of gas connected to
pressure by an equation of state p = pzR®, R is the gas constant, ® is the
absolute temperature of gas.

Let Q c R® be a three-dimensional domain which occupies the porous
medium (Fig. 1) and limited with a boundary surface 0Q . Within domain Q,
a set of wells is located at points with coordinates (xi,yu,yw), 1=12,...,1,

and pressures p(x;,Y;,,Y,;,t,) in these points is given at time t;.

Let domain Q to consist of a number of layers, the limiting surfaces of
which are close to horizontal planes. In the case of layers being gas bearing,
the gas differential pressure between the top and bottom interfaces of a layer
is negligible. Hence, the processes of gas filtration within such layers is

irrespective of the vertical coordinate y,.
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Fig. 1. Scheme of the considered gas storage.

Then equation (1) takes the following form:
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where y = y;.

Assuming the absence of gas supplement into the volume of domain Q
through its boundary 0Q , the pressure gradient along the normal to the boun-
dary is dismissed and 0p / On = 0 can be regarded as an appropriate bounda-

ry condition. This condition implies (p / 0x),, = (Op / OY),q = 0.

By implying the end of the neutral period (which is the period when
q = 0) to be a reference point, the initial pressure distribution can be assumed

constant and equal to a measured value p,.

2. Numerical solution scheme. Let us develop an iterative scheme for the
calculation gas pressure in a layer. Equation (2) can thereby be represented in
the following form:
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The linearized version [1, 2] of equation (1) reads
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and p is an iterative approximate value of solution p on the previous step of

iteration.
The operator of the fractional derivative can be presented via the Caputo
formulation, as follows [4, 7]
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where m =[a], [-] is an integer part of the real number, I' is the gamma
function.
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This operator can also be presented via the Riemann — Liouville formula-
tion, which has the following form:
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These two formulations are connected via the following relationship [7]:
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In order to construct a numerical model for non-stationary problems of
gas filtration in a porous medium, we employ iteratively the finite element
method combined with the difference scheme of time discretization in
Griinwald — Letnikov scheme [1, 7]:
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where ((;j is the binomial coefficient (the Pochhammer symbol), t is a cur-

rent time moment, and At denotes the discrete time period. During the calcu-
lations, the linearized version of equation (4) is solved iteratively at each time
interval. The Grinwald—Letnikov operator is approximated on an interval
[0, t] with the subinterval step At as
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are the Grinwald — Letnikov coefficients. We can calculate coefficients c;“)

by using the following recursive formulas [5]:
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Having used linearization (4) and discretization scheme for the fractional
derivative (6) — (8), we transform equation (3) to the form:
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where F(p,k,h,u,z) is given through formula (5).

Consider approximation on some extended time interval [0,T] that is
divided into N subintervals where the subinterval length equals At=T /N
and the time-nodes are t; = t{At. Let the fractional derivative be represented

via the Grinwald — Letnikov scheme:
k,
t;
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Finding a generalized solution of problem consists in the minimization of
the functional
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where
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and a,, a, are the finite element method coefficients [1].

For the representation of the linearized equation in the form (9), the
scheme of time discretization is used considering that p is an iterative appro-
ximate value of the solution p on the previous step of iteration.

An important step in this algorithm is to ensure the gas balance during
the entire non-stationary process. During the sub-diffusion, the distribution of
the permeability coefficient value is a particular issue. Simply following the
traditional approach and assuming it to be a constant implies the gas imbalan-
ce. To avoid such a conflict at each iteration in the Grinwald — Letnikov
scheme, the permeability coefficients in the geometric zones of the largest dif-
ferences in gas pressure are corrected as

ALA
k.(2.Y) = 1 TG0

in order to fulfill the condition

for each time point t;. Here, M is the mass of gas in the storage, M, is the

mass of extracted gas, A/ and AS are the length and cross-sectional area of
the formation element through which the gas passes, AQ and Ap are the

difference of gas consumption and gas pressure, respectively.

3. Numerical experiment. The method for adaptation of the gas perme-
ability coefficient is verified with the following numerical experiment. A layer
of an underground gas storage is considered with the seasonal withdrawal of
gas from the storage containing a variable number of working wells. The gas
drowning coefficient is selected according to the described algorithm in the

areas of the included wells k e (0.8 x107**[m?], 8.8 x107*[m?]). The coetfi-

cient of the fractional derivative of the gas pressure over time was chosen
within the range a €[0.94,1].

The input information was set by the pressures in control, metering, and
production wells in the neutral period and the values of volumetric gas
extraction during gas extraction from the storage.

The numerical results demonstrate the feature of the gas distribution be-
havior in the layer cross-section near the wells (Fig. 2 — Fig. 5), as well as in
the deposit of underground gas storage. The use of the fractional derivative
allows for the registration of the adequate qualitative behavior of the pressu-
re function in the well bottoming (Fig. 5 and Fig. 6). In contrast, the classical
approach would involve some additional analysis for the proper selection of
adaptive parameters.
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Fig. 2. The distribution of gas pressure
foroao=1,t=50.
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Fig. 4. The distribution of gas pressure
for a =0.97, t =50.
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Fig 3. The distribution of gas pressure
foroao=1, t=150.
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Fig 5. The distribution of gas pressure
for o =0.97, t =150.

It is worth noting that the criterion for choosing a proper value for the
order of the fractional derivative depending on the parameters of the process
remains disputable. In order to achieve a gas balance, the gas permeability
coefficients are selected separately in different areas of the environment.

Figures 6 — 8 demonstrate the behavior of gas distribution in the zones
around the wells and the relationship between permeability coefficients and
the order of the fractional derivative in the process of gas withdrawal from

the storage.

Fig. 6. The distribution of gas pressure for
=094, k=08x10"[m?].
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Fig 7. The distribution of gas pressure for
=096, k=08x10"3[m?].



Fig. 8. The distribution of gas pressure for o = 0.94,
k=12x10"[m?].

The analysis of the figures shows that a decrease in the fractional
derivative parameter leads to an increase in the area of reduced pressure in
the well vicinity. It is obvious that in practice, the area of reduced pressure is
closely related to the depression of pressure (or well flow). In the classic ver-
sion, the so-called "pressure hole" in the well area was modeled by changing
certain parameters of the environment. The use of derivatives of the frac-
tional order ensures the presence of a "pit" without selecting the parameters
of the environment. Thus, a qualitative picture of pressure behavior is presen-
ted. Conducting numerical experiments based on a real object and real measu-
red data showed the effectiveness of the approaches proposed in this paper
for the numerical modeling of mass transfer in porous media of complex
structures. The study of the qualitative properties of the obtained equations,
as well as the construction of their numerical solutions, are quite non-trivial
tasks that require independent research in each specific case.

Conclusions. The approach used in the work to fractional-differential
filtration models is phenomenological, so the possibility of their application in
each case should be justified using experimental data confirming the validity
of the corresponding fractional-differential generalizations. All the filtration
models obtained in this work belong to the class of anomalous diffusion
equations. The analysis of results of computing experiment shows that
depending on a choice of parameter of the derivative order with respect to
time o, the behavior of the average reservoir pressures doesn't change. It
occurs because throughout all system operating time, the balance of gas in
storage is ensured. In the borehole and in boundary area of the layer, the
behavior of pressures depends on the derivative parameter o. The less the
parameter o is then the more the difference between values of the pressure
in the borehole and boundary area of the layer is. Results of the experiment
confirm the behavior of gas pressure in the porous media at the presence of
atypical filtration. If the parameter o =1, the values of calculated average
reservoir pressures equal to the experimental data.

The problem of determining the relationship between the parameters of
the well bottoming, the parameters of the gas filtration process, and the order
of the fractional derivative remains unsolved. One of these practical criteria is
the maintenance of balance ratios that are amenable to experimental measu-
rements.

1. Jlonyx H. YucJsoBa MofeJsb IIPOLeCiB MacollepeHoCy i3 3aCTOCYBAaHHAM APOOOBUX IIO-
xXimanx // Dis.-mar. MomesroBaHHA Ta iH(opMm. TexHosorii. — 2020. — Bwum. 28. —
C. 26—32. — https://doi.org/10.15407 /fmmit2020.28.026.

2. Jlonyx H., Ipumyaa M., [Ipumyaa H., II'anuno A. Po3paxyHOK IOYaTKOBO-IPAHNY-
HIX YMOB y 3azadax inbTpalii rady B nHopuctux cepezgosuina // BicH. Ham. yH-TY
«JIbBiB. mosiTexHika»: Komm. Haykm Ta iHdopmariiiui Texrosorii. — 2009. — Bum. 638.
= C. 239-243.

139



Cook R. D., Malkus D. S., Plesha M. E., Witt R. J. Concept and applications of finite
element analysis. — New York: John Wiley & Sons, 2002. — xvi + 719 p.
Gafiychuk V., Datsko B., Meleshko V., Blackmore D. Analysis of the solutions of
coupled nonlinear fractional reaction—diffusion equations // Chaos, Solitons &
Fractals. — 2009. — 41, No. 3. — P. 1095—-1104.

— https://doi.org/10.1016 /j.chaos.2008.04.039.
Hilfer R. (ed.) Applications of fractional calculus in physics. — Singapore — New
Jersey — London — Hong-Kong: World Scientific Publ. Co., 2000. — vii + 463 p.
Zhang L., Wang G., Song G. On mixed boundary value problem of impulsive
semilinear evolution equations of fractional order // Bound. Value Probl. — 2012. —
17. — P. 1-8. — https://doiorg/10.1186,/1687-2770-2012-17.
Ciesielski M., Leszczynski J. Numerical simulations of anomalous diffusion // Proc.
Int. Conf. Computer Methods in Mechanics (CMM — 2003). — Gliwitse: Wista, 2003.
— https://doi.org/10.48550/arXiv.math-ph/0309007.

MATEMATUYHE MOAENIOBAHHSA ®INbTPALJI FA3Y Y BUBIMHUX 30HAX CBEPOANIOBUH
NIASEMHUX CXOBULL FA3Y 3 BUKOPUCTAHHAM OPOBOBUX NOXIAHUX

3anponoHo8aHo Yucao8y modead Hiavmpayii 2a3y 8 NOPuUcmMuUr HeodHopiOHUX cepedosu-
Wax 3 BUKOPUCTMAHHAM MemOO0Y CKIHUEHHUX edemMeHMi8 ma 3aCmOocys8anHam 0po6osux
noxiOHuUx 3a uacom, OOUUCACHUX HA OCHO8L onepamopa I['pronsanvda — JlemHikosa.
Pe3yavmamu 4uca08020 aHaAi3y 8epudikosaro 3 BUKOPUCMAHHAM OMPUMAHUL 3 Peanb-
H020 00CAl0Y eMNiPUYHUX PI3UKO-2e0MeMPULHUL NAPAMEMPL8 MA 8ULBAEHO X SAKICHe
1Y3200%CeHH .

Katouoei caosa: mamemamuuna modeas, HeCMAyloHAPHUL pYyx 2a3y, 0podosi noxioui,

ATHeapu3ayisi, memood CKIHUeHHUX esemeHmis.
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