Exact solution to the poroelasticity problem for a multilayered rectangular domain

N. D. Vaysfeld, Z. Yu. Zhuravlova

Анотація


Точний розв’язок задачі поропружності для шаруватої прямокутної області

Розглядається поропружний напружений стан шаруватої прямокутної області в термінах крайової задачі теорії поропружності. Запропонований аналітичний метод розв’язання у випадку ідеального контакту між шарами дає змогу побуду­ва­ти точний розв’язок задачі. Отримані у явному вигляді формули для визна­чен­ня напружень, переміщень та тиску рідини відкрили можливість проведення всесторонніх числових дослід­жень, які демонструють залежність напруженого стану від поропружних влас­тивостей матеріалів. Описаний підхід до розв’язання може бути розширено на випадок, коли між шарами задано умови «м’якого» чи «жорсткого» контактів.

 

Зразок для цитування: N. D. Vaysfeld, Z. Yu. Zhuravlova, “Exact solution to the poroelasticity problem for a multilayered rectangular domain,” Мат. методи та фіз.-мех. поля, 67, №3-4, 118-131 (2024), https://doi.org/10.15407/mmpmf2024.67.3-4.118-131


Ключові слова


поропружна шарувата прямокутна область, інтегральне перетворення, матричне диференціальне числення, точний розв’язок

Посилання


O. R. Hachkevych, R. M. Kushnir, “Selected problems of the mechanics of coupled fields,” Mat. Met. Fiz.-Mekh. Polya, 59, No. 1, 7–24 (2016) (in Ukrainian); English translation: J. Math. Sci., 229, No. 2, 115–132 (2018), https://doi.org/10.1007/s10958-018-3666-7

H. S. Kit, N. M. Ivas’ko, “Two-dimensional problem of thermoelasticity for a half space whose boundary is either free or rigidly, smoothly, or flexibly fastened with heat insulation in a ribbon-like domain parallel to the boundary,” Mat. Met. Fiz.-Mekh. Polya, 61, No. 2, 80–90 (2018) (in Ukrainian); English translation: J. Math. Sci., 253, No. 1, 84–98 (2021), https://doi.org/10.1007/s10958-021-05215-7

O. P. Kozachok, B. S. Slobodian, R. M. Martynyak, “Interaction of two elastic bodies in the presence of periodically located gaps filled with a real gas,” Mat. Met. Fiz.-Mekh. Polya, 58, No. 1, 103–111 (2015) (in Ukrainian); English translation: J. Math. Sci., 222, No. 2, 131–142 (2017), https://doi.org/10.1007/s10958-017-3287-6

J. Kubik, M. Kachmaryk, E. Chaplya, “Methods for the determination of the characteristics of porous saturated media,” Fiz.-Khim. Mekh. Mater., 37, No. 1, 81–88 (2001) (in Ukrainian); English translation: Mater. Sci., 37, No. 1, 92–102 (2001), https://doi.org/10.1023/A:1012342523893

R. M. Kushnir, І. М. Makhorkin, М. І. Makhorkin, “Numerical-analytic determination of the static thermoelastic state of plane multilayer thermosensitive structures,” Mat. Met. Fiz.-Mekh. Polya, 62, No. 4, 131–140 (2019) (in Ukrainian); English translation: J. Math. Sci., 265, No. 3, 498–511 (2022), https://doi.org/10.1007/s10958-022-06067-5

V. V. Mykhas’kiv, I. Y. Zhbadynskyi, O. I. Stepanyuk, “Using of Helmholtz potentials for description of wave field due to dynamic multiple cracks opening in bimaterial,” Mat. Met. Fiz.-Mekh. Polya, 50, No. 3, 154–159 (2007) (in Ukrainian).

G. Ya. Popov, Exact Solutions of Some Boundary Value Problems of Deformable Solid Mechanics [in Russian], Astroprint, Odesa (2013).

M. P. Savruk, Two-Dimensional Problems of Elasticity Theory for Cracked Bodies [in Russian], Nauk. Dumka, Kyiv (1981).

Zh. Y. Ai, G. L. Gu, “Dynamic behaviour of layered transversely isotropic poroelastic media subjected to rectangular harmonic loads,” Int. J. Numer. Anal. Methods Geomech, 46, No. 10, 1941–1955 (2022), https://doi.org/10.1002/nag.3375

Zh. Y. Ai, G. L. Gu, Y. Zh. Zhao, J. J. Yang, “An exact solution to layered transversely isotropic poroelastic media under vertical rectangular moving loads,” Comput. Geotechn, 138, Article 104314 (2021), https://doi.org/10.1016/j.compgeo.2021.104314

Zh. Y. Ai, Y. D. Hu, Y. Ch. Cheng, “Non-axisymmetric consolidation of poroelastic multilayered materials with anisotropic permeability and compressible constituents,” Appl. Math. Model., 38, No. 2, 576–587 (2014), https://doi.org/10.1016/j.apm.2013.06.014

M. A. Biot, “General theory of three-dimensional consolidation,” J. Appl. Phys., 12, No. 2, 155–164 (1941), https://doi.org/10.1063/1.1712886

Y. Chen, W. Wang, Sh. Ding, X. Wang, Q. Chen, X. Li, “A multi-layered poroelastic slab model under cyclic loading for a single osteon,” BioMed. Eng. OnLine, 17, Article 97 (2018), https://doi.org/10.1186/s12938-018-0528-y

A. H.-D. Cheng, Poroelasticity, Ser. Theory and Applications of Transport in Porous Media, Vol. 27, Springer, Cham (2016), https://doi.org/10.1007/978-3-319-25202-5

F. R. Gantmacher, The Theory of Matrices, Vol. 1; Vol. 2, Chelsea Publ. Co., New York (1959).

K. Liu, Zh. Zhang, E. Pan, “Dynamic response of a transversely isotropic and multilayered poroelastic medium subjected to a moving load,” Soil Dynam. Earthq. Eng., 155, Article 107154 (2022), https://doi.org/10.1016/j.soildyn.2022.107154

T. Nahirnyj, K. Tchervinka, “Mathematical modeling of the coupled processes in nanoporous bodies,” Acta Mech. Automat., 12, No. 3, 196–203 (2018), https://doi.org/10.2478/ama-2018-0030

T. Senjuntichai, W. Kaewjuea, “Dynamic response of multiple flexible strips on a multilayered poroelastic half-plane,” J. Mech. Mater. Struct., 3, No. 10, 1885–1901 (2008), https://doi.org/10.2140/jomms.2008.3.1885

T. Senjuntichai, S. Keawsawasvong, R. K. N. D. Rajapakse, “Vertical vibration of multiple flexible strip foundations on multilayered transversely isotropic poroelastic soils,” Int. J. Geomech., 21, No. 11 (2021), https://doi.org/10.1061/(ASCE)GM.1943-5622.0002210

T. Senjuntichai, B. Phulsawat, S. Keawsawasvong, W. Kaewjuea, “ Dynamic impedances of multiple strips on multi-layered transversely isotropic poroelastic soils,” Forces in Mechanics, 14, Article 100260 (2024), https://doi.org/10.1016/j.finmec.2024.100260

S. J. Singh, S. Rani, “Plane strain deformation of a multi-layered poroelastic half-space by surface loads,” J. Earth Syst. Sci., 115, No. 6, 685–694 (2006), https://doi.org/10.1007/s12040-006-0001-3

J. M. Stache, “Transient analysis of multilayered poroelastic flexible pavements,” in: Proc. of the International Conference on Transportation and Development 2024: Pavements and Infrastructure Systems ICTD 2024 (June 15–18, 2024, Atlanta, Georgia), ASCE (2024), https://doi.org/10.1061/9780784485538.007

Y. V. Tokovyy, “Elastic and thermoelastic response of multilayer inhomogeneous hollow cylinders,” Mech. Adv. Mater. Struct., 31, No. 17, 3889–3901 (2024), https://doi.org/10.1080/15376494.2023.2186548

N. D. Vaysfeld, Z. Yu. Zhuravlova, “Response of a poroelastic semi-infinite strip to the compression acting upon its lateral sides,” Mat. Met. Fiz.-Mekh. Polya, 65, No. 1-2, 199–208 (2022) (in Ukrainian); English translation: J. Math. Sci., 282, No. 5, 849–861 (2024), https://doi.org/10.1007/s10958-024-07220-y

A. Verruijt, An Introduction to Soil Dynamics, Ser. Theory and Applications of Transport in Porous Media, Vol. 24, Springer, Dordrecht (2010), https://doi.org/10.1007/978-90-481-3441-0

F. Wang, T. Ding, X. Han, L. Lv, “Dynamic Green’s functions for an anisotropic multilayered poroelastic half-space,” Transport in Porous Media, 133, No. 2, 293–312 (2020), https://doi.org/10.1007/s11242-020-01424-x

R. Wang, H.-J. Kümpel, “Poroelasticity: Efficient modeling of strongly coupled, slow deformation processes in multilayered half-space,” Geophysics, 68, No. 2, 705–717 (2003), https://doi.org/10.1190/1.1567241

Z. Zhuravlova, “Exact solution of the plane problems for poroelastic rectangle and semi-strip,” Z. Angew. Math. Mech., 102, No. 11, e202200162 (2022), https://doi.org/10.1002/zamm.202200162


Посилання

  • Поки немає зовнішніх посилань.


Creative Commons License
Ця робота ліцензована Creative Commons Attribution 3.0 License.