Розрахунок локально навантажених тонких ортотропних замкнених конічних оболонок на основі класичної та деяких уточнених теорій
Анотація
Зразок для цитування: М. В. Марчук, Р. І. Тучапський, “Розрахунок локально навантажених тонких ортотропних замкнених конічних оболонок на основі класичної та деяких уточнених теорій”, Мат. методи та фіз.-мех. поля, 67, №3-4, 172-194 (2024), https://doi.org/10.15407/mmpmf2024.67.3-4.172-194
Ключові слова
Посилання
O. A. Avramenko, “Stress-strain analysis of nonthin conical shells with thickness varying in two coordinate directions,” Prikl. Mekh., 48, No. 3, 117–126 (2012) (in Russian); English translation: Int. Appl. Mech., 48, No. 3, 332–342 (2012), https://doi.org/10.1007/s10778-012-0524-z
O. A. Avramenko, “Effect of local loads on the stress-strain state of nonthin orthotropic conical shells,” Prikl. Mekh., 44, No. 8, 103–113 (2008) (in Russian); English translation: Int. Appl. Mech., 44, No. 8, 916–926 (2008), https://doi.org/10.1007/s10778-008-0106-2
I. Ya. Amiro, “Determination of the stressed state of shells of revolution subjected to the action of local loads,” Prikl. Mekh., 30, No. 11, 43–49 (1994) (in Russian); English translation: Int. Appl. Mech., 30, No. 11, 867–873 (1994), https://doi.org/10.1007/BF00847041
N. S. Bondarenko, A. S. Gol’tsev, V. P. Shevchenko, “Fundamental solutions of the thermoelastic equations for transversely isotropic plates,” Prikl. Mekh., 46, No. 3, 51–60 (2010) (in Russian); English translation: Int. Appl. Mech., 46, No. 3, 287–295 (2010), https://doi.org/10.1007/s10778-010-0309-1
Ya. Yo. Burak, Yu. K. Rudavskyi, M. A. Sukhorolskyi, Analytical Mechanics of Locally Loaded Shells [in Ukrainian], Intelect-Zakhid, Lviv (2007).
A. T. Vasilenko, Ya. M. Grigorenko, G. K. Sudavtsova, “Solving problems on the stress state of thin shells of revolution under local loads,” Prikl. Mekh., 36, No. 4, 106–113 (2000) (in Russian); English translation: Int. Appl. Mech., 36, No. 4, 518–525 (2000), https://doi.org/10.1007/BF02681975
I. N. Vekua, Some General Methods for Constructing Various Variants of the Shell Theory [in Russian], Nauka, Moscow (1982).
Yu. I. Vinogradov, G. B. Men’kov, Method of Functional Normalization for Boundary Value Problems of the Shell Theory [in Russian], Editorial URSR, Moscow (2001).
Yu. I. Vinogradov, G. B. Men’kov, “The construction of special functions for the analytic solution of boundary-value problems of the theory of conical shells,” Prikl. Mat. Mekh., 60, No. 1, 127–131 (1996) (in Russian); English translation: J. Appl. Math. Mech., 60, No. 1, 121–125 (1996), https://doi.org/10.1016/0021-8928(96)00016-0
S. K. Godunov, “Numerical solution of boundary value problems for systems of linear ordinary differential equations,” Uspekhi Mat. Nauk, 16, No. 3 (99), 171–174 (1961) (in Russian).
E. I. Grigolyuk, G. M. Kulikov, Multilayered Reinforced Shells: Calculation of Pneumatic Tires [in Russian], Mashinostroenie, Moscow (1988).
Ya. M. Grigorenko, “Approaches to the numerical solution of linear and nonlinear problems in shell theory in classical and refined formulations,” Prikl. Mekh., 32, No. 6, 3–39 (1996) (in Russian); English translation: Int. Appl. Mech., 32, No. 6, 409–442 (1996), https://doi.org/10.1007/BF02088409
Ya. M. Grigorenko, O. A. Avramenko, “Influence of geometrical and mechanical parameters on the stress-strain state of closed nonthin conical shells,” Prikl. Mekh., 44, No. 10, 52–62 (2008) (in Russian); English translation: Int. Appl. Mech., 44, No. 10, 1119–1127 (2008), https://doi.org/10.1007/s10778-009-0128-4
Ya. M. Grigorenko, A. Ya. Grigorenko, “Static and dynamic problems for anisotropic inhomogeneous shells with variable parameters and their numerical solution (review),” Prikl. Mekh., 49, No. 2, 3–70 (2013) (in Russian); English translation: Int. Appl. Mech., 49, No. 2, 123–193 (2013), https://doi.org/10.1007/s10778-013-0558-x
V. S. Hudramovych, “Contact mechanics of shell structures under local loading,” Prikl. Mekh., 45, No. 7, 24–51 (2009) (in Russian); English translation: Int. Appl. Mech., 45, No. 7, 708–729 (2009), https://doi.org/10.1007/s10778-009-0224-5
V. S. Hudramovych, A. P. Dzyuba, “Contact interactions and optimization of locally loaded shell structures,” Mat. Met. Fiz.-Mekh. Polya, 51, No. 2, 188–201 (2008) (in Russian); English translation: J. Math. Sci., 162, No. 2, 231–245 (2009), https://doi.org/10.1007/s10958-009-9634-5
N. G. Guryanov, Y. P. Artyukhin, “A conical shell of linearly variable thickness under the effect of a normal concentrated force,” Issled. Teor. Plast. Obol., Issue 8, 278–286 (1972) (in Russian); English translation: Foreign Technology Division: Wright-Patterson Air Force Base, Ohio (1974).
I. G. Emelyanov, A. V. Kuznetsov, “The stressed state of shell structures under local loads,” Probl. Mashin. Nad. Mash., No. 1, 53–59 (2014) (in Russian); English translation: J. Mach. Manuf. Reliab., 43, No. 1, 42–47 (2014), https://doi.org/10.3103/S1052618814010051
A. D. Kovalenko, Ya. M. Grigorenko, L. A. Il’in, Theory of Thin Conical Shells and its Application in Mechanical Engineering [in Russian], Vydav. AN URSR, Kyiv (1963).
G. M. Kulikov, S. V. Plotnikova, “Investigation of locally loaded multilayer shells by a mixed finite-element method. 1. Geometrically linear statement,” Mekh. Kompos. Mater., 38, No. 5, 607–620 (2002) (in Russian); English translation: Mech. Compos. Mater., 38, No. 5, 397–406 (2002), https://doi.org/10.1023/A:1020978008577
S. G. Lekhnitskii, Theory of Elasticity of an Anisotropic Body [in Russian], Gostekhteoretizdat., Moscow–Leningrad (1963).
V. I. Myachenkov, I. V. Grigoryev, Calculation of Composite Shell Structures on a Computer [in Russian], Mashinostroenie, Moscow (1981).
B. V. Nerubailo, V. P. Ol’shanskii, “Asymptotic method for analysis of a conical shell under local loading,” Izv. RAN. Mekh. Tverd. Tela, No. 3, 115–124 (2007) (in Russian); English translation: Mech. Solids., 42, No. 3, 429–436 (2007), https://doi.org/10.3103/S0025654407030119
B. L. Pelekh, A. V. Maksymuk, I. M. Korovaichuk, Contact Problems for Layered Structural Elements and Bodies with Coatings [in Russian], Nauk. Dumka, Kyiv (1988).
B. L. Pelekh, M. A. Sukhorolskyi, Contact Problems of Theory of Elastic Anisotropic Shells [in Russian], Nauk. Dumka, Kyiv (1980).
V. I. Pogorelov, Construction Mechanics of Thin-walled Structures [in Russian], BHV-Peterburg, St. Petersburg (2007).
I. F. Obraztsov, B. V. Nerubailo, A. I. Ivanov, “Investigation of rotation shells under localized force and temperature effects,” in: Rasch. Prochn., Issue 29, 243–262 (1989) (in Russian).
V. A. Sibiryakov, “Calculation of orthotropic conical shell for arbitrary external load, using the method of V. Z. Vlasov,” Izv. Vuzov. Aviats. Tekhn., No. 2, 72–82 (1959) (in Russian); English translation: ARS Journal. Supplement, 30, No. 1, 78–82 (1960), https://doi.org/10.2514/8.4990
R. І. Тuchapskyy, “Equations of thin anisotropic elastic shells of revolution in the {m,n}-approximation method,” Mat. Met. Fiz.-Mekh. Polya, 58, No. 3, 43–56 (2015) (in Ukrainian); English translation: J. Math. Sci., 226, No. 1, 52–68 (2017), https://doi.org/10.1007/s10958-017-3518-x
I. Yu. Khoma, Generalized Theory of Anisotropic Shells [in Russian], Nauk. Dumka, Kyiv (1986).
I. Bokov, N. Bondarenko, E. Strelnikova, “Investigation of stress-strain state of transversely isotropic plates under bending using equation of statics {1,2}-approximation,” EUREKA: Phys. Eng., No. 5, 58–66 (2016), https://doi.org/10.21303/2461-4262.2016.00159
K. Chandrashekhara, M. S. Karekar, “Bending analysis of a truncated conical shell subjected to asymmetric load,” Thin-Walled Struct., 13, No. 4, 299–318 (1992), https://doi.org/10.1016/0263-8231(92)90026-S
W. Cui, J. Pei, W. Zhang, “A simple and accurate solution for calculating stresses in conical shells,” Comput. Struct., 79, No. 3, 265–279 (2001), https://doi.org/10.1016/S0045-7949(00)00139-5
V. V. Firsanov, P. V. Thien, “Research of the stress-strain state of conical shell un-der the action of local load based on the non-classical theory,” J. Mech. Eng. Res. & Dev., 43, No. 4, 24–32 (2020).
A. Ya. Grigorenko, W. H. Müller, Ya. M. Grigorenko, G. G. Vlaikov, Recent Developments in Anisotropic Heterogeneous Shell Theory, Vol. 1, General Theory and Applications of Classical Theory, Springer Nature, Singapore (2016), https://doi.org/10.1007/978-981-10-0353-0
Ya. M. Grigorenko, A. Ya. Grigorenko, E. Bespalova, “On some recent discrete-continuum approaches to the solution of shell problems,” in H. Altenbach, J. Chróścielewski, V. Eremeyev, K. Wiśniewski (eds.), Recent Developments in the Theory of Shells, Ser. Advanced Structured Materials, Vol. 110, Springer, Cham (2019), pp. 285–313, https://doi.org/10.1007/978-3-030-17747-8_16
N. J. Hoff, “Thin circular conical shells under arbitrary loads,” Trans. ASME. J. Appl. Mech., 22, No. 4, 557–562 (1955), https://doi.org/10.1115/1.4011154
M. Jabbari, M. Z. Nejad, M. Ghannad, “Thermo-elastic analysis of axially functionally graded rotating thick truncated conical shells with varying thickness,” Composites Part B: Eng., 96, 20–34 (2016), https://doi.org/10.1016/j.compositesb.2016.04.026
R. Jain, K. Ramachandra, K. R. Y. Simha, “Singularity in rotating orthotropic discs and shells,” Int. J. Solids Struct., 37, No. 14, 2035–2058 (2000), https://doi.org/10.1016/S0020-7683(98)00346-1
A. F. D. Loula, E. M. Toledo, L. P. Franca, E. L. M. Garcia, “Application of a mixed Galerkin/Least-squares method to axisymmetric shell problems subjected to arbitrary loading,” Technical Report No. 028/89, LNCC, Rio de Janeiro, Brazil, 1989.
S. A. Łukasiewicz, “Introduction of concentrated loads in plates and shells,” Prog. Aerosp. Sci., 17, 109–146 (1976), https://doi.org/10.1016/0376-0421(76)90006-3
S. Łukasiewicz, Local Loads in Plates and Shells, Ser. Mechanics of Surface Structures, Vol. 4, Springer, Dortrecht (1979).
M. Marchuk, R. Tuchapskyy, D. Nespliak, “Numerical use of {m, n}-approximation method thermoelastic anisotropic thin shell theory equations represented in a special form,” Comput. Math. Appl., 77, No. 10, 2740–2763 (2019), https://doi.org/10.1016/j.camwa.2019.01.003
J. S. Moita, A. L. Araujo, V. Franco Correia, C. M. Mota Soares, “Free vibrations analysis of composite and hybrid axisymmetric shells,” Compos. Struct., 286, Article 115267 (2022), https://doi.org/10.1016/j.compstruct.2022.115267
J. S. Moita, A. L. Araujo, V. Franco Correia, C. M. Mota Soares, “Vibrations of functionally graded material axisymmetric shells,” Compos. Struct., 248, Article 112489 (2020), https://doi.org/10.1016/j.compstruct.2020.112489
I. F. Pinto Correia, J. I. Barbosa, C. M. Mota Soares, C. A. Mota Soares, “A finite element semi-analytical model for laminated axisymmetric shells: statics, dynamics and buckling,” Comput. Struct., 76, No. 1-3, 299–317 (2000), https://doi.org/10.1016/S0045-7949(99)00165-0
I. F. Pinto Correia, C. M. Mota Soares, C. A. Mota Soares, J. Herskovits, “Analysis of laminated conical shell structures using higher order models,” Compos. Struct., 62, No. 3-4, 383–390 (2003), https://doi.org/10.1016/j.compstruct.2003.09.009
I. S. Raju, G. V. Rao, B. P. Rao, J. Venkataramana, “A conical shell finite element,” Comput. Struct., 4, No. 4, 901–915 (1974), https://doi.org/10.1016/0045-7949(74)90052-2
M. Sarrazin, H. Jensen, “Axisymmetric shells for non-axisymmetric loads: an exact conical element approach,” Adv. Eng. Softw. (1978), 6, No. 3, 148–155 (1984), https://doi.org/10.1016/0141-1195(84)90026-3
I. Sheinman, S. Weissman, “Coupling between symmetric and antisymmetric modes in shells of revolution,” J. Compos. Mater., 21, No. 11, 988–1007 (1987), https://doi.org/10.1177/002199838702101101
B. S. K. Sundarasivarao, N. Ganesan, “Deformation of varying thickness of conical shells subjected to axisymmetric loading with various end conditions,” Eng. Fract. Mech., 39, No. 6, 1003–1010 (1991), https://doi.org/10.1016/0013-7944(91)90106-B
E. Viola, L. Rossetti, N. Fantuzzi, F. Tornabene, “Static analysis of functionally graded conical shells and panels using the generalized unconstrained third order theory coupled with the stress recovery,” Compos. Struct., 112, 44–65 (2014), https://doi.org/10.1016/j.compstruct.2014.01.039
F. J. Witt, “Thermal stress analysis of conical shells,” Nucl. Struct. Eng., 1, No. 5, 449–456 (1965), https://doi.org/10.1016/0369-5816(65)90147-X
C.-P. Wu, Y.-C. Hung, “Asymptotic theory of laminated circular conical shells,” Int. J. Eng. Sci., 37, No. 8, 977–1005 (1999), https://doi.org/10.1016/S0020-7225(98)00108-6
C.-P. Wu, Y.-C. Hung, J.-Y. Lo, “A refined asymptotic theory of laminated circular conical shells,” Eur. J. Mech. A/Solids, 21, No. 2, 281–300 (2002), https://doi.org/10.1016/S0997-7538(01)01199-8
Посилання
- Поки немає зовнішніх посилань.
Ця робота ліцензована Creative Commons Attribution 3.0 License.