Розв’язування основних крайових задач теорії пружності для смуги з використанням функції Вігака
Анотація
Показано, що три основні крайові задачі теорії пружності для смуги можна розв’язати з використанням єдиного підходу, який ґрунтується на використанні методу безпосереднього інтегрування з поданням шуканих компонент тензора напружень та вектора переміщень через визначальну функцію Вігака. Таке подання є вигідним для використання у задачах оптимізації та керування напруженим станом, оскільки забезпечує безпосередню можливість керувати компонентами напружено-деформованого стану з використанням єдиної функції. Показано, що інтегральні умови рівноваги, отримані шляхом інтегрування рівнянь рівноваги з урахуванням впливу межі (тобто заданих – у випадку першої основної задачі, чи реактивних – у випадку другої та третьої основних задач напружень на поздовжніх сторонах смуги) є ефективним критерієм перевірки точності обчислень для трьох основних задач.
Зразок для цитування: Ю. В. Токовий, М. Й. Юзв’як, “Розв’язування основних крайових задач теорії пружності для смуги з використанням функції Вігака”, Мат. методи та фіз.-мех. поля, 67, №3-4, 97-117 (2024), https://doi.org/10.15407/mmpmf2024.67.3-4.97-117
Ключові слова
Посилання
V. M. Vihak, Control of Temperature Stresses and Displacements [in Russian], Nauk. Dumka, Kyiv (1988).
V. M. Vihak, “Direct method of integration of equations of plane problems of elasticity and thermoelasticity for orthotropic materials,” Mat. Met. Fiz.-Mekh. Polya, 40, No. 1, 24–29 (1997) (in Ukrainian).
B. М. Kalynyak, Yu. V. Tokovyy, А. V. Yasinskyy, “Direct and inverse problems of thermomechanics concerning the optimization and identification of the thermal stressed state of deformed solids,” Mat. Met. Fiz.-Mekh. Polya, 59, No. 3, 28–42 (2016) (in Ukrainian); English translation: J. Math. Sci., 236, No. 1, 21–34 (2019), https://doi.org/10.1007/s10958-018-4095-3
A. S. Kosmodamianskyy, N. M. Neskorodev, “The superposition method of complex solutions in two-dimensional problems of the theory of elasticity for multi-connected anisotropic bodies,” Dop. Nats. Akad. Nauk Ukr., No. 10, 52–55 (1995) (in Russian).
R. M. Kushnir, V. S. Popovych, A. V. Yasinskyy, Optimization and Identification in the Thermomechanics of Inhomogeneous Bodies, Vol. 5 of Ya. Yo. Burak, R. M. Kushnir (eds), Modeling and Optimization in Thermomechanics of Electroconductive Inhomogeneous Bodies [in Ukrainian], Spolom, Lviv (2011).
R. M. Kushnir, Y. V. Tokovyi, M. Y. Yuzvyak, A. V. Yasinskyi, “Reduction of the two-dimensional thermoelasticity problems for solids with corner points to key integrodifferential equations,” Ukr. Mat. Zh., 73, No. 10, 1355–1367 (2021) (in Ukrainian), https://doi.org/10.37863/umzh.v73i10.6784; English translation: Ukr. Math. J., 73, No. 10, 1566–1579 (2022), https://doi.org/10.1007/s11253-022-02014-4
M. Mishiku, K. Teodosiu, “Solution of an elastic static plane problem for nonhomogeneous isotropic bodies by means of the theory of complex variables,” Prikl. Mat. Mekh., 30, No. 2, 379–387 (1966) (in Russian); English translation: J. Appl. Math. Mech., 30, No. 2, 459-468 (1966), https://doi.org/10.1016/0021-8928(67)90195-5
Yu. V. Tokovyy, M. Yo. Yuzvyak, A. V. Yasinskyy, “Representation of solutions of plane problems of the theory of elasticity for a rectangular domain in terms of Vihak functions,” Visn. Kyiv. Nats. Univ. Im. T. Shevchenka. Ser. Fiz.-Mat. Nauky, Issue 3, 123–126 (2021) (in Ukrainian), https://doi.org/10.17721/1812-5409.2021/3.24
M. Yo. Yuzvyak, Yu. V. Tokovyy, “Elastic equilibrium of a hollow cylinder of finite length subjected to axisymmetric force loading,” Mat. Met. Fiz.-Mekh. Polya, 64, No. 3, 65–89 (2021) (in Ukrainian), https://doi.org/10.15407/mmpmf2021.64.3.65-89; English translation: M. Yo. Yuzvyak, Yu. V. Tokovyy, “Elastic equilibrium of a hollow cylinder of finite length under axisymmetric force loading,” J. Math. Sci., 278, No. 5, 807–841 (2024), https://doi.org/10.1007/s10958-024-06963-y
M. Ainsworth, C. Parker, “Unlocking the secrets of locking: Finite element analysis in planar linear elasticity,” Comput. Methods Appl. Mech. Eng., 395, Art. 115034 (2022), https://doi.org/10.1016/j.cma.2022.115034
J. R. Barber, Elasticity, Springer, Cham (2022).
R. N. Bracewell, The Fourier Transform and its Applications, McGraw-Hill, Boston (1999).
V. A. Buryachenko, Micromechanics of Heterogeneous Materials, Springer, New York (2010).
J.-S. Chen, M. Hillman, S.-W. Chi, “Meshfree methods: Progress made after 20 years,” J. Eng. Mech., 143, No. 4, Art. 04017001 (2017), https://doi.org/10.1061/(ASCE)EM.1943-7889.0001176
Y. Z. Chen, “A survey of new integral equations in plane elasticity crack problem,” Eng. Fract. Mech., 51, No. 1, 97–134 (1995), https://doi.org/10.1016/0013-7944(94)00229-B
S. L. Crouch, “Solution of plane elasticity problems by the displacement discontinuity method. I. Infinite body solution,” Int. J. Numer. Meth. Eng., 10, No. 2, 301–343 (1976), https://doi.org/10.1002/nme.1620100206
B. Davies, Integral Transforms and their Applications, Springer, New York (2002).
L. Debnath, D. Bhatta, Integral Transforms and their Applications, Taylor & Francis / CRC Press, Boca Raton (2014).
M. Denda, I. Kosaka, “Dislocation and point-force-based approach to the special Green's function BEM for elliptic hole and crack problems in two dimensions,” Int. J. Numer. Meth. Eng., 40, No. 15, 2857–2889 (1997), https://doi.org/10.1002/(SICI)1097-0207(19970815)40:15<2857::AID-NME195>3.0.CO;2-3
A. H. England, Complex Variable Methods in Elasticity, Wiley-Interscience, New York (1971).
G. Geymonat, S. Müller, N. Triantafyllidis, “Homogenization of nonlinearly elastic materials, microscopic bifurcation and macroscopic loss of rank-one convexity,” Arch. Ration. Mech. Anal., 122, 231–290 (1993), https://doi.org/10.1007/BF00380256
Y. J. Liu, S. Mukherjee, N. Nishimura, M. Schanz, W. Ye, A. Sutradhar, E. Pan, N. A. Dumont, A. Frangi, A. Sáez, “Recent advances and emerging applications of the boundary element method,” Appl. Mech. Rev., 64, No. 3, Art. 030802 (2011), https://doi.org/10.1115/1.4005491
A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, Cambridge University Press, Cambridge (1927).
M. V. Lubarda, V. A. Lubarda, Intermediate Solid Mechanics, Cambridge University Press, Cambridge (2020).
N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Gröningen (1953).
M. Oane, M. A. Mahmood, A. C. Popescu, “A state-of-the-art review on integral transform technique in laser–material interaction: Fourier and non-Fourier heat equations,” Materials, 14, No. 16, Art. 4733 (2021), https://doi.org/10.3390/ma14164733
V. G. Rekach, Manual of the Theory of Elasticity, Mir Publ., Moscow (1979).
A. V. Rychahivskyy, Yu. V. Tokovyy, “Correct analytical solutions to the thermoelasticity problems in a semi-plane,” J. Thermal Stresses, 31, No. 11, 1125–1145 (2008), https://doi.org/10.1080/01495730802250854
M. H. Sadd, Elasticity. Theory, Applications, and Numerics, Elsevier, Amsterdam (2014).
F. Shakeriaski, M. Ghodrat, J. Escobedo-Diaz, M. Behnia, “Recent advances in generalized thermoelasticity theory and the modified models: a review,” J. Comput. Des. Eng., 8, No. 1, 15–35 (2021), https://doi.org/10.1093/jcde/qwaa082
N. Tahan, M. N. Pavlović, M. D. Kotsovos, “Annular sector plates under in-plane loading: general symbolic solution and its application to the collinear compression case,” J. Strain Anal., 39, No. 3, 299–313 (2004), https://doi.org/10.1243/030932404323042722
R. Talreja, C. V. Singh, Damage and Failure of Composite Materials, Cambridge University Press, Cambridge (2012).
S. P. Timoshenko, J. N. Goodier, Theory of Elasticity, McGraw-Hill, New York (1969).
Y. Tokovyy, Y. Lozynskyy, C.-C. Ma, “Two-dimensional thermal stresses and displacements in an arbitrarily inhomogeneous elastic layer,” Appl. Mech. Mater., 627, 141–144 (2014), https://doi.org/10.4028/www.scientific.net/AMM.627.141
Y. V. Tokovyy, C.-C. Ma, “Analytical solutions to the planar non-axisymmetric elasticity and thermoelasticity problems for homogeneous and inhomogeneous annular domains,” Int. J. Eng. Sci., 47, No. 3, 413–437 (2009), https://doi.org/10.1016/j.ijengsci.2008.10.005
Y. V. Tokovyy, C.-C. Ma, “Thermal stresses in anisotropic and radially inhomogeneous annular domains,” J. Thermal Stresses, 31, No. 9, 892–913 (2008), https://doi.org/10.1080/01495730802194433
Y. Tokovyy, C.-C. Ma, The Direct Integration Method for Elastic Analysis of Nonhomogeneous Solids, Cambridge Scholars Publ., Newcastle (2021).
Yu. Tokovyy, C.-C. Ma, “Steady-state heat transfer and thermo-elastic analysis of inhomogeneous semi-infinite solids,” in V. S. Vikhrenko (ed.), Heat Conduction – Basic Research, InTech, Rijeka (2011), pp. 249–268, https://doi.org/10.5772/28011
Y. Tokovyy, M. Yuzvyak, “Spatial stress analysis in an elastic parallelepiped,” J. Mech., 40, 625–643 (2024), https://doi.org/10.1093/jom/ufae049
O. C. Zienkiewicz, R. L. Taylor, S. Govindjee, The Finite Element Method. Its Basis and Fundamentals, Butterworth-Heinemann, Waltham (2025), https://doi.org/10.1016/C2022-0-01494-X.
Посилання
- Поки немає зовнішніх посилань.
Ця робота ліцензована Creative Commons Attribution 3.0 License.