Обернені задачі визначення залежного від часу коефіцієнта параболічного рівняння з інволюцією та умовами антиперіодичності
Анотація
Зразок для цитування: Я. О. Баранецький, І. І. Демків, П. І. Каленюк, “Обернені задачі визначення залежного від часу коефіцієнта параболічного рівняння з інволюцією та умовами антиперіодичності,” Мат. методи та фіз.-мех. поля, 65, No. 1-2, 80–95 (2022), https://doi.org/10.15407/mmpmf2022.65.1-2.80-95
Ключові слова
Посилання
Ya. O. Baranetskij, P. I. Kalenyuk, “Boundary-value problems with Birkhoff regular but not strongly regular conditions for a second-order differential operator,” Mat. Met. Fiz.-Mekh. Polya, 59, No. 4, 7–23 (2016); English translation: J. Math. Sci., 238, No. 1, 1–21 (2019), https://doi.org/10.1007/s10958-019-04214-z
Ya. O. Baranetskij, P. I. Kalenyuk, “Nonlocal multipoint problem with multiple spectrum for an ordinary (2n)th order differential equation,” Mat. Met. Fiz.-Mekh. Polya, 60, No. 3, 32–45 (2017); English translation: J. Math. Sci., 246, No. 2, 152–169 (2020), https://doi.org/10.1007/s10958-020-04727-y
Ya. O. Baranets’kyi, P. I. Kalenyuk, L. I. Kolyasa, “Spectral properties of nonself-adjoint nonlocal boundary-value problems for the operator of differentiation of even order,” Ukr. Mat. Zh., 70, No. 6, 739–751 (2018); English translation: Ukr. Math. J., 70, No. 6, 851–865 (2018), https://doi.org/10.1007/s11253-018-1538-4
V. E. Vladykina, A. A. Shkalikov, “Regular ordinary differential operators with involution,” Mat. Zametki, 106, No. 5, 643-659 (2019), https://doi.org/10.4213/mzm12557; English translation: Math. Notes, 106, No. 5, 674–687 (2019), https://doi.org/10.1134/S0001434619110026
V. E. Vladykina, A. A. Shkalikov, “Spectral properties of ordinary differential operators with involution,” Dokl. Akad. Nauk, Ross. Akad. Nauk, 484, No. 1, 12-17 (2019), https://doi.org/10.31857/S0869-5652484112-17; English translation: Dokl. Math., 99, No. 1, 5–10 (2019), https://doi.org/10.1134/S1064562419010046
I. C. Gohberg, M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space, Vol. 18 of Translations of Mathematical Monographs, Amer. Math. Soc., Providence (1969), https://doi.org/10.1090/mmono/018
V. A. Il’in, “Existence of a reduced system of eigen- and associated functions for a nonselfadjoint ordinary differential operator,” Tr. Mat. Inst. Im. Steklova, 142, 148–155 (1976); English translation: Proc. Steklov Inst. Math., 142, 157-164 (1979).
M. A. Naimark, Linear Differential Operators. Part I: Elementary Theory of Linear Differential Operators, Frederick Ungar Publ. Co., New York (1967).
I. Orazov, M. A. Sadybekov, “On a class of problems of determining the temperature and density of heat sources given initial and final temperature,” Sib. Mat. Zh., 53, No. 1, 180–186 (2012); English translation: Sib. Math. J., 53, No. 1, 146–151 (2012), https://doi.org/10.1134/S0037446612010120
A. A. Sarsenbi, “The ill-posed problem for the heat transfer equation with involution,” Zh. Sredn. Mat. Obshch., 21, No. 1, 48–59 (2019) (in Russian), https://doi.org/10.15507/2079-6900.21.201901.48-59
N. Al-Salti, S. Kerbal, M. Kirane, “Initial-boundary value problems for a time-fractional differential equation with involution perturbation,” Math. Model. Nat. Phenom., 14, No. 3, Art. No. 312 (2019); https://doi.org/10.1051/mmnp/2019014
A. Ashyralyev, A. Sarsenbi, “Well-posedness of a parabolic equation with involution,” Numer. Funct. Anal. Optim., 38, No. 10, 1295–1304 (2017), https://doi.org/10.1080/01630563.2017.1316997
A. Ashyralyev, A. M. Sarsenbi, “Well-posedness of an elliptic equation with an involution,” Electron. J. Differ. Equat., 2015, No. 284, 1–8 (2015).
Ya. O. Baranetskij, P. I. Kalenyuk, M. I. Kopach, A. V. Solomko, “The nonlocal boundary value problem with perturbations of mixed boundary conditions for an elliptic equation with constant coefficients. I,” Karpat. Mat. Publ., 11, No. 2, 228–239 (2019), https://doi.org/10.15330/cmp.11.2.228-239
Ya. O. Baranetskij, P. I. Kalenyuk, M. I. Kopach, A. V. Solomko, “The nonlocal multipoint problem with Dirichlet-type conditions for an ordinary differential equation of even order with involution,” Mat. Stud., 54, No. 1, 64–78 (2020), https://doi.org/10.30970/ms.54.1.64-78
A. Cabada, A. F. Tojo, “Equations with involutions,” in: Book of Abstracts of Workshop on Differential Equations – 2014 (March 27–30, 2014, Malá Morávka, Czech Republic), p. 240, http://workshop.math.cas.cz/wde/2014/contrib.php
A. Hazanee, D. Lesnic, “Determination of a time-dependent coefficient in the bioheat equation,” Int. J. Mech. Sci., 88, 259–266 (2014), https://doi.org/10.1016/j.ijmecsci.2014.05.017
A. Hazanee, D. Lesnic, “Determination of a time-dependent heat source from nonlocal boundary conditions,” Eng. Anal. Bound. Elem., 37, No. 6, 936–956 (2013), https://doi.org/10.1016/j.enganabound.2013.03.003
A. Hazanee, D. Lesnic, M. I. Ismailov, N. B. Kerimov, “An inverse time-dependent source problem for the heat equation with a non-classical boundary condition,” Appl. Math. Modell., 39, No. 20, 6258–6272 (2015), https://doi.org/10.1016/j.apm.2015.01.058
A. Hazanee, D. Lesnic, M. I. Ismailov, N. B. Kerimov, “Inverse time-dependent source problems for the heat equation with nonlocal boundary conditions,” Appl. Math. Comput., 346, 800–815 (2019); https://doi.org/10.1016/j.amc.2018.10.059
M. Kirane, N. Al-Salti, “Inverse problems for a nonlocal wave equation with an involution perturbation,” J. Nonlin. Sci. Appl., 9, No. 3, 1243–1251 (2016); http://doi.org/10.22436/jnsa.009.03.49
L. V. Kritskov, A. M. Sarsenbi, “Basicity in L_p of root functions for differential equations with involution,” Electron. J. Differ. Equat., 2015, No. 278, 1–9 (2015).
L. Kritskov, M. Sadybekov, A. Sarsenbi, “Properties in L_p of root functions for a nonlocal problem with involution,” Turk. J. Math., 43, No. 1, 393–401 (2019), https://doi.org/10.3906/mat-1809-12
M. Sadybekov, G. Dildabek, M. Ivanova, “Direct and inverse problems for nonlocal heat equation with boundary conditions of periodic type,” Bound. Value Probl. 2022, 53 (2022), https://doi.org/10.1186/s13661-022-01632-y
M. A. Sadybekov, G. Dildabek, M. B. Ivanova, “On an inverse problem of reconstructing a heat conduction process from nonlocal data,” Adv. Math. Phys. (Hindawi), 2018, Art. ID 8301656 (2018), https://doi.org/10.1155/2018/8301656
A. A. Sarsenbi, “On a class of inverse problems for a parabolic equation with involution,” AIP Conf. Proc., 1880, 040021 (2017), https://doi.org/10.1063/1.5000637
A. Sarsenbi, “Solvability of a mixed problem for a heat equation with an involution perturbation,” AIP Conf. Proc., 2183, 070025 (2019), https://doi.org/10.1063/1.5136187
Посилання
- Поки немає зовнішніх посилань.
Ця робота ліцензована Creative Commons Attribution 3.0 License.