Метод розв’язання геометрично нелінійних задач згину пластин складної форми

S. M. Sklepus

Анотація


Розроблено новий чисельно-аналітичний метод розв’язування геометрично нелінійних задач згину пластин складної форми. Постановку задачі виконано у рамках уточненої теорії вищого порядку, що враховує квадратичний закон розподілу поперечних дотичних напружень по товщині. Для лінеаризації нелінійної задачі використано метод неперервного продовження за параметром. Для варіаційної постановки лінеаризованої задачі побудовано функціонал у формі Лаґранжа, заданий на кінематично можливих швидкостях переміщень і функцій зсуву. Для знаходження основних невідомих задачі нелінійного згину пластини сформульовано задачу Коші для системи звичайних диференціальних рівнянь. Задачу Коші розв’язано методом Рунґе–Кутта–Мерсона з автоматичним вибором кроку. Праві частини диференціальних рівнянь при фіксованих значеннях параметра навантаження, які відповідають схемі Рунґе–Кутта–Мерсона, знайдено із розв’язку варіаційної задачі для функціонала Лаґранжа. Варіаційні задачі розв’язано методом Рітца у поєднанні з методом R-функцій. Розв’язано тестові задачі для жорстко закріпленої та шарнірно опертої пластин, що знаходяться під дією рівномірно розподіленого навантаження різної інтенсивності. Розв’язано задачу згину пластини складної форми. Досліджено вплив геометричної форми на напружено-деформований стан.

 

Зразок для цитування: С. М. Склепус, “Метод розв’язання геометрично нелінійних задач згину пластин складної форми,” Мат. методи та фіз.-мех. поля, 65, No. 3-4, 198–207 (2022), https://doi.org/10.15407/mmpmf2022.65.3-4.198-207


Ключові слова


гнучка пластина, геометрична нелінійність, уточнена теорія, складна форма, метод R-функцій

Посилання


S. A. Ambartsumyan, General Theory of Anisotropic Shells [in Russian], Nauka, Moscow (1974).

K.-J. Bathe, E. L. Wilson, Numerical Methods in Finite Element Analysis, Prentice-Hall, Englewood Cliffs (1976).

K. Washizu, Variational Methods in Elasticity and Plasticity, Pergamon Press, Oxford (1982).

A. S. Vol’mir, Flexible Plates and Shells [in Russian], Gostekhteorizdat (1956).

E. I. Grigolyuk, V. I. Shalashilin, “Method of continuation with respect to the parameter in problems of nonlinear deformation of rods, plates and shells,” Issled. Teor. Plast. Obol., Iss. 17, Part 1, 3–58 (1984) (in Russian).

Ya. M. Grigorenko, A. T. Vasilenko, Theory of shells of variable rigidity [in Russian], Vol. 4 of A. N. Guz’ (ed), Methods for calculation of shells: in 5 vols, Naukova Dumka, Kyiv (1981).

Ya. M. Grigorenko, V. I. Gulyaev, “Nonlinear problems of shell theory and their solution methods (review),” Prikl. Mekh., 27, No. 10, 3–23 (1991) (in Russian); English translation: Int. Appl. Mech., 27, No. 10, 929–947 (1991), https://doi.org/10.1007/BF00887499

V. I. Krylov, V. V. Bobkov, P. I. Monastyrnyi, Computational Methods: in 2 vol. [in Russian], Vol. 2, Nauka, Moscow (1977).

L. V. Kurpa, E. I. Lyubitskaya, I. O. Morachkovskaya, “The R-function method used to solve nonlinear bending problems for orthotropic shallow shells on an elastic foundation,” Prikl. Mekh., 46, No. 6, 56–65 (2010) (in Russian); English translation: Int. Appl. Mech., 46, No. 6, 660–668 (2010), https://doi.org/10.1007/s10778-010-0353-x

A. O. Rasskazov, I. I. Sokolovskaya, N. A. Shulga, Theory and Calculation of Layered Orthotropic Plates and Shells [in Russian], Vyshcha Shkola, Kiev (1986).

V. L. Rvachev, Theory of R-functions and Some of Its Applications [in Russian], Nauk. Dumka, Kiev (1982).

M. L. Bucalem, K. J. Bathe, “Finite element analysis of shell structures,” Arch. Comput. Meth. Eng., 4, No. 1, 3–61 (1997), https://doi.org/10.1007/BF02818930

J. N. Reddy, “A refined nonlinear theory of plates with transverse shear deformation,” Int. J. Solids Struct., 20, Nos. 9-10, 881–896 (1984), https://doi.org/10.1016/0020-7683(84)90056-8

J. N. Reddy, “A simple higher-order theory for laminated composite plates,” Trans. ASME. J. Appl. Mech., 51, No. 4, 745–752 (1984), https://doi.org/10.1115/1.3167719

E. Reissner, “On the theory of bending of elastic plates,” J. Math. Phys., 23, Nos. 1-4, 184–191 (1944), https://doi.org/10.1002/sapm1944231184

A. B. Sabir, M. S. Djoudi, “Shallow shell finite element for the large deflection geometrically nonlinear analysis of shells and plates,” Thin-Walled Struct., 21, No. 3, 253–267 (1995), https://doi.org/10.1016/0263-8231(94)00005-K

N. Smetankina, A. Merkulova, D. Merkulov, O. Postnyi, “Dynamic response of laminate composite shells with complex shape under low-velocity impact,” in: M. Nechyporuk, V. Pavlikov, D. Kritskiy (eds), Integrated Computer Technologies in Mechanical Engineering-2020, ICTM-2020, Ser. Lecture Notes in Networks and Systems, Vol. 188, Springer, Cham (2021), pp. 267–276, https://doi.org/10.1007/978-3-030-66717-7_22

M. Talha, B. N. Singh, “Static response and free vibration analysis of FGM plates using higher order shear deformation theory,” Appl. Math. Modell., 34, 3991–4010 (2010), https://doi.org/10.1016/j.apm.2010.03.034

V. N. Van Do, C.-H. Lee, “Nonlinear analyses of FGM plates in bending by using a modified radial point interpolation mesh-free method,” Appl. Math. Model., 57, 1–20 (2018), https://doi.org/10.1016/j.apm.2017.12.035


Посилання

  • Поки немає зовнішніх посилань.


Creative Commons License
Ця робота ліцензована Creative Commons Attribution 3.0 License.